Channel Activation Voltage Alone Is Directly Altered in an Isoform-specific Manner by Nav1.4 and Nav1.5 Cytoplasmic Linkers

Channel Activation Voltage Alone Is Directly Altered in an Isoform-specific Manner by Nav1.4 and... The isoform-specific direct role of cytoplasmic loops in the gating of two voltage-gated sodium channel isoforms, the human cardiac channel (Nav1.5; hH1) and the human adult skeletal muscle channel (Nav1.4; hSkM1), was investigated. Comparison of biophysical characteristics was made among hSkM1, hH1, and several hSkM1/hH1 chimeras in which the putative cytoplasmic loops that join domain I to II (loop A) and domain II to III (loop B) from one isoform replaced one or both of the analogous loops from the other isoform. For all parameters measured, hSkM1 and hH1 behavior were significantly different. Comparison of hSkM1 and hH1 biophysical characteristics with the function of their respective chimeras indicate that only the half-activation voltage (V a) is directly and differently altered by the species of cytoplasmic loop such that a channel consisting of one or both hSkM1 loops activates at smaller depolarizations, while a larger depolarization is required for activation of a channel containing one or both of the analogous hH1 loops. When either cardiac channel loop A or B is attached to hSkM1, a 6–7 mV depolarizing shift in V a is measured, increasing to a nearly 20 mV depolarization when both cardiac-channel loops are attached. The addition of either skeletal muscle-channel loop to hH1 causes a 7 mV hyperpolarization in V a, which increases to about 10 mV for the double loop chimera. There is no significant difference in either steady-state inactivation or in the recovery from inactivation data between hSkM1 and its chimeras and between hH1 and its chimeras. Data indicate that the cytoplasmic loops contribute directly to the magnitude of the window current, suggesting that channels containing skeletal muscle loops have three times the peak persistent channel activity compared to channels containing the cardiac loops. An electrostatic mechanism, in which surface charge differences among these loops might alter differently the voltage sensed by the gating mechanism of the channel, can not account for the observed isoform-specific effects of these loops only on channel activation voltage. In summary, although the DI-DII and DII-DIII loop structures among isoforms are not well conserved, these data indicate that only one gating parameter, V a is affected directly and in an isoform-specific manner by these divergent loop structures, creating loop-specific window currents and percentages of persistently active channels at physiological voltages that will likely impact the excitability of the cell. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Channel Activation Voltage Alone Is Directly Altered in an Isoform-specific Manner by Nav1.4 and Nav1.5 Cytoplasmic Linkers

Loading next page...
 
/lp/springer_journal/channel-activation-voltage-alone-is-directly-altered-in-an-isoform-7QknPZbyWM
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-004-0650-6
Publisher site
See Article on Publisher Site

Abstract

The isoform-specific direct role of cytoplasmic loops in the gating of two voltage-gated sodium channel isoforms, the human cardiac channel (Nav1.5; hH1) and the human adult skeletal muscle channel (Nav1.4; hSkM1), was investigated. Comparison of biophysical characteristics was made among hSkM1, hH1, and several hSkM1/hH1 chimeras in which the putative cytoplasmic loops that join domain I to II (loop A) and domain II to III (loop B) from one isoform replaced one or both of the analogous loops from the other isoform. For all parameters measured, hSkM1 and hH1 behavior were significantly different. Comparison of hSkM1 and hH1 biophysical characteristics with the function of their respective chimeras indicate that only the half-activation voltage (V a) is directly and differently altered by the species of cytoplasmic loop such that a channel consisting of one or both hSkM1 loops activates at smaller depolarizations, while a larger depolarization is required for activation of a channel containing one or both of the analogous hH1 loops. When either cardiac channel loop A or B is attached to hSkM1, a 6–7 mV depolarizing shift in V a is measured, increasing to a nearly 20 mV depolarization when both cardiac-channel loops are attached. The addition of either skeletal muscle-channel loop to hH1 causes a 7 mV hyperpolarization in V a, which increases to about 10 mV for the double loop chimera. There is no significant difference in either steady-state inactivation or in the recovery from inactivation data between hSkM1 and its chimeras and between hH1 and its chimeras. Data indicate that the cytoplasmic loops contribute directly to the magnitude of the window current, suggesting that channels containing skeletal muscle loops have three times the peak persistent channel activity compared to channels containing the cardiac loops. An electrostatic mechanism, in which surface charge differences among these loops might alter differently the voltage sensed by the gating mechanism of the channel, can not account for the observed isoform-specific effects of these loops only on channel activation voltage. In summary, although the DI-DII and DII-DIII loop structures among isoforms are not well conserved, these data indicate that only one gating parameter, V a is affected directly and in an isoform-specific manner by these divergent loop structures, creating loop-specific window currents and percentages of persistently active channels at physiological voltages that will likely impact the excitability of the cell.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off