Changes in yield classification in a soybean-rice rotation

Changes in yield classification in a soybean-rice rotation For yield based site-specific management to be successful in fields with crop rotations, changes in management zones between crops must be determined. The study objectives were to determine if yield classes change between crops within a rotation and whether soil properties can predict the yield classes or the year-to-year changes. A percentile classification method was used to categorize yearly soybean (Glycine max) and rice (Oryza sativa) yield in two fields with soybean-rice-soybean rotations into low, medium and high yield classes. There was little agreement in yield classifications between years. Yield class based on soil properties was predicted accurately by linear discriminant analysis in Field 1 20–67% of the time and in Field 2 13–83% of the time. Predictions in Field 1 were based on soil available Mg and P, elevation and the deep soil apparent electrical conductivity (ECa). Predictions in Field 2 were based on soil texture, soil available P, K and Mg, and pH. The linear discriminant analysis was also able to predict year-to-year changes in yield class. Changes in class in Field 1 could be predicted by total soil C and N, silt, and soil available Mg and P depending on the year. Soil texture, soil available P, K and Mg, total soil C and pH, elevation and deep soil ECa predicted yield changes in Field 2 depending on the year. The results of this study indicate only limited success at management zone definition in a soybean-rice rotation. Further investigation is needed with other crop rotation sequences to verify the findings of this study. Precision Agriculture Springer Journals

Changes in yield classification in a soybean-rice rotation

Loading next page...
Springer US
Copyright © 2009 by Springer Science+Business Media, LLC
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial