Changes in yield classification in a soybean-rice rotation

Changes in yield classification in a soybean-rice rotation For yield based site-specific management to be successful in fields with crop rotations, changes in management zones between crops must be determined. The study objectives were to determine if yield classes change between crops within a rotation and whether soil properties can predict the yield classes or the year-to-year changes. A percentile classification method was used to categorize yearly soybean (Glycine max) and rice (Oryza sativa) yield in two fields with soybean-rice-soybean rotations into low, medium and high yield classes. There was little agreement in yield classifications between years. Yield class based on soil properties was predicted accurately by linear discriminant analysis in Field 1 20–67% of the time and in Field 2 13–83% of the time. Predictions in Field 1 were based on soil available Mg and P, elevation and the deep soil apparent electrical conductivity (ECa). Predictions in Field 2 were based on soil texture, soil available P, K and Mg, and pH. The linear discriminant analysis was also able to predict year-to-year changes in yield class. Changes in class in Field 1 could be predicted by total soil C and N, silt, and soil available Mg and P depending on the year. Soil texture, soil available P, K and Mg, total soil C and pH, elevation and deep soil ECa predicted yield changes in Field 2 depending on the year. The results of this study indicate only limited success at management zone definition in a soybean-rice rotation. Further investigation is needed with other crop rotation sequences to verify the findings of this study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Changes in yield classification in a soybean-rice rotation

Loading next page...
 
/lp/springer_journal/changes-in-yield-classification-in-a-soybean-rice-rotation-VikjV2gCD2
Publisher
Springer US
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-009-9143-z
Publisher site
See Article on Publisher Site

Abstract

For yield based site-specific management to be successful in fields with crop rotations, changes in management zones between crops must be determined. The study objectives were to determine if yield classes change between crops within a rotation and whether soil properties can predict the yield classes or the year-to-year changes. A percentile classification method was used to categorize yearly soybean (Glycine max) and rice (Oryza sativa) yield in two fields with soybean-rice-soybean rotations into low, medium and high yield classes. There was little agreement in yield classifications between years. Yield class based on soil properties was predicted accurately by linear discriminant analysis in Field 1 20–67% of the time and in Field 2 13–83% of the time. Predictions in Field 1 were based on soil available Mg and P, elevation and the deep soil apparent electrical conductivity (ECa). Predictions in Field 2 were based on soil texture, soil available P, K and Mg, and pH. The linear discriminant analysis was also able to predict year-to-year changes in yield class. Changes in class in Field 1 could be predicted by total soil C and N, silt, and soil available Mg and P depending on the year. Soil texture, soil available P, K and Mg, total soil C and pH, elevation and deep soil ECa predicted yield changes in Field 2 depending on the year. The results of this study indicate only limited success at management zone definition in a soybean-rice rotation. Further investigation is needed with other crop rotation sequences to verify the findings of this study.

Journal

Precision AgricultureSpringer Journals

Published: Oct 20, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off