Changes in the resistance to corrosion of thermally passivated titanium aluminide during exposure to sodium chloride solution

Changes in the resistance to corrosion of thermally passivated titanium aluminide during exposure... In this study the surface of Ti-47Al-2Cr (at. %) was modified by heating and exposure to nitrogen gas flow to form a predominantly oxide layer on the surface. Samples were then immersed in Ringer’s solution and 3.5 wt. % sodium chloride solution and electrochemical impedance spectroscopy tests were performed at regular intervals. The results showed that the layer is highly resistant to corrosion. The equivalent circuit proposed for the impedance curves includes a Warburg element, because diffusion is controlling charge transfer through the passive surface layer. The resistance of the layer was not significantly reduced even after 300 h exposure to solutions and scanning electron micrographs showed the surface was not damaged. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Changes in the resistance to corrosion of thermally passivated titanium aluminide during exposure to sodium chloride solution

Loading next page...
 
/lp/springer_journal/changes-in-the-resistance-to-corrosion-of-thermally-passivated-KeN3HXROX5
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1255-4
Publisher site
See Article on Publisher Site

Abstract

In this study the surface of Ti-47Al-2Cr (at. %) was modified by heating and exposure to nitrogen gas flow to form a predominantly oxide layer on the surface. Samples were then immersed in Ringer’s solution and 3.5 wt. % sodium chloride solution and electrochemical impedance spectroscopy tests were performed at regular intervals. The results showed that the layer is highly resistant to corrosion. The equivalent circuit proposed for the impedance curves includes a Warburg element, because diffusion is controlling charge transfer through the passive surface layer. The resistance of the layer was not significantly reduced even after 300 h exposure to solutions and scanning electron micrographs showed the surface was not damaged.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: May 25, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off