Changes in the Photosynthetic Apparatus of Broad Bean Leaves as Dependent on the Content of Heavy Metals in the Growth Medium

Changes in the Photosynthetic Apparatus of Broad Bean Leaves as Dependent on the Content of Heavy... The content of chlorophyll, the rate of O2 evolution, the slow phase of fluorescence induction, and photoinduced changes in the intensity of electron paramagnetic resonance (EPR) signal I from the reaction center of photosystem I (P+700) were studied in leaves of Vicia faba L. grown in 10–7–10–3 M aqueous solutions of CdCl2, SnCl2, CuCl2, and MgCl2. At low concentrations of heavy metal (Cd, Sn, and Cu) chlorides, the content of chlorophyll per fresh weight decreased. However, the rate of O2 evolution calculated per chlorophyll basis, ΔO2/(Δt chlorophyll), increased. High concentrations of heavy metals significantly suppressed plant development and inhibited photosynthetic O2 evolution. In contrast, plant treatment with MgCl2 (10–5–10–3 M) resulted in an increase in the content of chlorophyll and a stimulation of leaf photosynthetic activity. A positive correlation between the F M/F T ratio and ΔO2/(Δt chlorophyll) (r = 0.89, P > 0.999) was found. We observed a negative correlation between the values of P/P 0 of EPR signal I (white/far-red light) and ΔO2/(Δtchlorophyll) (r = – 0.89, P > 0.999). The data obtained indicate nonspecific and nonmonotone changes in the photosynthetic apparatus of plants treated with heavy metals: low concentrations of heavy metals (10–7–10–6 M) stimulated photosynthetic activity, whereas high concentrations (10–4–10–3 M) suppressed it. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Changes in the Photosynthetic Apparatus of Broad Bean Leaves as Dependent on the Content of Heavy Metals in the Growth Medium

Loading next page...
 
/lp/springer_journal/changes-in-the-photosynthetic-apparatus-of-broad-bean-leaves-as-CVDeA8xahA
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1009042429685
Publisher site
See Article on Publisher Site

Abstract

The content of chlorophyll, the rate of O2 evolution, the slow phase of fluorescence induction, and photoinduced changes in the intensity of electron paramagnetic resonance (EPR) signal I from the reaction center of photosystem I (P+700) were studied in leaves of Vicia faba L. grown in 10–7–10–3 M aqueous solutions of CdCl2, SnCl2, CuCl2, and MgCl2. At low concentrations of heavy metal (Cd, Sn, and Cu) chlorides, the content of chlorophyll per fresh weight decreased. However, the rate of O2 evolution calculated per chlorophyll basis, ΔO2/(Δt chlorophyll), increased. High concentrations of heavy metals significantly suppressed plant development and inhibited photosynthetic O2 evolution. In contrast, plant treatment with MgCl2 (10–5–10–3 M) resulted in an increase in the content of chlorophyll and a stimulation of leaf photosynthetic activity. A positive correlation between the F M/F T ratio and ΔO2/(Δt chlorophyll) (r = 0.89, P > 0.999) was found. We observed a negative correlation between the values of P/P 0 of EPR signal I (white/far-red light) and ΔO2/(Δtchlorophyll) (r = – 0.89, P > 0.999). The data obtained indicate nonspecific and nonmonotone changes in the photosynthetic apparatus of plants treated with heavy metals: low concentrations of heavy metals (10–7–10–6 M) stimulated photosynthetic activity, whereas high concentrations (10–4–10–3 M) suppressed it.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off