Changes in the Fatty Acid Composition of Hepatopancreas of the Mollusk Mytilus trossulus Fed on Microalgae

Changes in the Fatty Acid Composition of Hepatopancreas of the Mollusk Mytilus trossulus Fed on... The influence of diet on the fatty acid composition of the hepatopancreas of Mytilus trossulus was studied. Three groups of mollusks were fed monocultures of the microalgae Phaeodactylum tricornutum, Chaetoceros muelleri (Bacillariophyceae), and Nannochloropsis sp. (Eustigmatophyceae) for 10 days. After 10 days, the proportion of polyunsaturated fatty acids, mainly eicosapentaenoic and docosahexaenoic, increased in the total lipids of the hepatopancreas in all mollusk groups. The content of saturated fatty acids in the mussel tissues decreased and was not dependent on the amount in the algal diet. Toward the end of the experiment, the fatty acid composition of the hepatopancreas of mussels was similar irrespective of the fatty acid composition of their food. The fatty acid analysis of M. trossulus feces suggests a selective assimilation by mussels of predominantly the n-3 polyunsaturated fatty acids. The role of fatty acid metabolism in M. trossulus is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Marine Biology Springer Journals

Changes in the Fatty Acid Composition of Hepatopancreas of the Mollusk Mytilus trossulus Fed on Microalgae

Loading next page...
 
/lp/springer_journal/changes-in-the-fatty-acid-composition-of-hepatopancreas-of-the-mollusk-8E5GjuwLRI
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Freshwater & Marine Ecology
ISSN
1063-0740
eISSN
1608-3377
D.O.I.
10.1023/B:RUMB.0000011706.89867.ec
Publisher site
See Article on Publisher Site

Abstract

The influence of diet on the fatty acid composition of the hepatopancreas of Mytilus trossulus was studied. Three groups of mollusks were fed monocultures of the microalgae Phaeodactylum tricornutum, Chaetoceros muelleri (Bacillariophyceae), and Nannochloropsis sp. (Eustigmatophyceae) for 10 days. After 10 days, the proportion of polyunsaturated fatty acids, mainly eicosapentaenoic and docosahexaenoic, increased in the total lipids of the hepatopancreas in all mollusk groups. The content of saturated fatty acids in the mussel tissues decreased and was not dependent on the amount in the algal diet. Toward the end of the experiment, the fatty acid composition of the hepatopancreas of mussels was similar irrespective of the fatty acid composition of their food. The fatty acid analysis of M. trossulus feces suggests a selective assimilation by mussels of predominantly the n-3 polyunsaturated fatty acids. The role of fatty acid metabolism in M. trossulus is discussed.

Journal

Russian Journal of Marine BiologySpringer Journals

Published: Oct 12, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off