Changes in the content of individual lipid classes of a lichen Peltigera aphthosa during dehydration and subsequent rehydration

Changes in the content of individual lipid classes of a lichen Peltigera aphthosa during... A lichen Peltigera aphthosa (L.) Willd. was subjected to a short-term (7 days) or a long-term (180 and 540 days) dehydration followed by rehydration. Then the composition and content of lipids, as well as the rate of their metabolism (the rate of sodium 2-14C-acetate incorporation) were investigated. The long-term dehydration resulted in a dramatic decrease in the content (per dry wt) of major extrachloroplastic phospholipids, mainly phosphatidylcholines and phosphatidylethanolamines. The rehydration of lichen thalli after a short-term and long-term dehydration also resulted in an enhanced breakdown of these lipid molecules; however, it was accompanied by their rather intense in vivo synthesis, which was decreased after long-term dehydration. In contrast to phospholipids, the betaine lipids, diacylglyceroltrimethylhomoserines (DGTSs), were involved in metabolic processes to a far lesser extent. In the course of rehydration, their content was virtually unchanged and decreased only after 540 days of dehydration. The rate of incorporation of sodium 2-14C-acetate into the DGTS molecules was moderate and did not change even after long-term dehydration. Glycolipids were characterized by a fair tolerance to hydrolytic processes and by an increase in the rate of their synthesis after 540 days of the lichen dehydration. Responses of neutral lipids to dehydration turned out to be different. The long-term dehydration (for 540 days) was accompanied by a decrease in the contents of free sterols and sterol esters, whereas the contents of di- and triacylglycerols remained unchanged. Rehydration resulted in a decrease in diacylglycerol and sterol ester contents. All neutral lipids were characterized by a dramatic decrease in the rate of de novo synthesis after long-term dehydration. It was suggested that the tolerance of lichen to long-term dehydration was appreciably determined by the tolerance of its phycobiont, in this case, a green alga Coccomyxa sp.; the bulk of its lipids was characterized by a minimum rate of breakdown and, at the same time, by a stable synthesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Changes in the content of individual lipid classes of a lichen Peltigera aphthosa during dehydration and subsequent rehydration

Loading next page...
 
/lp/springer_journal/changes-in-the-content-of-individual-lipid-classes-of-a-lichen-FexVUanamj
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0006-9
Publisher site
See Article on Publisher Site

Abstract

A lichen Peltigera aphthosa (L.) Willd. was subjected to a short-term (7 days) or a long-term (180 and 540 days) dehydration followed by rehydration. Then the composition and content of lipids, as well as the rate of their metabolism (the rate of sodium 2-14C-acetate incorporation) were investigated. The long-term dehydration resulted in a dramatic decrease in the content (per dry wt) of major extrachloroplastic phospholipids, mainly phosphatidylcholines and phosphatidylethanolamines. The rehydration of lichen thalli after a short-term and long-term dehydration also resulted in an enhanced breakdown of these lipid molecules; however, it was accompanied by their rather intense in vivo synthesis, which was decreased after long-term dehydration. In contrast to phospholipids, the betaine lipids, diacylglyceroltrimethylhomoserines (DGTSs), were involved in metabolic processes to a far lesser extent. In the course of rehydration, their content was virtually unchanged and decreased only after 540 days of dehydration. The rate of incorporation of sodium 2-14C-acetate into the DGTS molecules was moderate and did not change even after long-term dehydration. Glycolipids were characterized by a fair tolerance to hydrolytic processes and by an increase in the rate of their synthesis after 540 days of the lichen dehydration. Responses of neutral lipids to dehydration turned out to be different. The long-term dehydration (for 540 days) was accompanied by a decrease in the contents of free sterols and sterol esters, whereas the contents of di- and triacylglycerols remained unchanged. Rehydration resulted in a decrease in diacylglycerol and sterol ester contents. All neutral lipids were characterized by a dramatic decrease in the rate of de novo synthesis after long-term dehydration. It was suggested that the tolerance of lichen to long-term dehydration was appreciably determined by the tolerance of its phycobiont, in this case, a green alga Coccomyxa sp.; the bulk of its lipids was characterized by a minimum rate of breakdown and, at the same time, by a stable synthesis.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Feb 19, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off