Changes in Lipid Metabolism during Adaptation of the Dunaliella salina Photosynthetic Apparatus to High CO2 Concentration

Changes in Lipid Metabolism during Adaptation of the Dunaliella salina Photosynthetic Apparatus... The effects of CO2 on the content and composition of lipid fatty acids (FA) and on the photosynthetic characteristics of unicellular halophilic green alga Dunaliella salina (known to be susceptible to CO2 stress) were investigated. It was shown that even one-day-long increase in the CO2 concentration (from 2 to 10%) provoked an increase in the total amount of FA on the dry weight basis by 30%. After 7-day-long growth at 10% CO2, this value was 2.7-fold higher than that at 2% CO2. The difference in the FA content and composition indicated the activation of FA synthesis de novo and inhibition of their elongation and desaturation, as well as the increase in the relative content of saturated FA at 10% CO2. It was demonstrated that, after one-day-long CO2 stress, the MGDG/DGDG ratio increased fourfold without change in the sum of their FA, which indicates the increase in the proportion of lipids predisposed to micellar (hexagonal phase) but not lamellar structure formation. Under short-term CO2 stress, the ratio of ω3/ω6 FA increased and the content of E-16:1ω13 FA in phosphatidylglycerols increased sharply. The drop in protein content especially in the photosystem I (PSI) preparations, as well as diminishing the ratio of F 700-to-F 686 nm fluorescence (F 700/F 686) under short-term CO2 stress argued for the significant damage to PSI. The reversibility of these changes at more prolonged treatment (7 and 10 days) demonstrated that D. salina cells could restore the functional activity of PSI. The lower level of F 700/F 686, chlorophyll a (Chla)/Chlb, and ω3/ω6 FA ratio in line with the higher level of E-16:1ω13 in the cells growing for a long time at the high CO2 concentration is characteristic for the new structural and functional state of the photosynthetic apparatus providing for the effective photosynthesis of D. salina under these conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Changes in Lipid Metabolism during Adaptation of the Dunaliella salina Photosynthetic Apparatus to High CO2 Concentration

Loading next page...
 
/lp/springer_journal/changes-in-lipid-metabolism-during-adaptation-of-the-dunaliella-salina-00ksk8SfxD
Publisher
Springer Journals
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/B:RUPP.0000011303.11957.48
Publisher site
See Article on Publisher Site

Abstract

The effects of CO2 on the content and composition of lipid fatty acids (FA) and on the photosynthetic characteristics of unicellular halophilic green alga Dunaliella salina (known to be susceptible to CO2 stress) were investigated. It was shown that even one-day-long increase in the CO2 concentration (from 2 to 10%) provoked an increase in the total amount of FA on the dry weight basis by 30%. After 7-day-long growth at 10% CO2, this value was 2.7-fold higher than that at 2% CO2. The difference in the FA content and composition indicated the activation of FA synthesis de novo and inhibition of their elongation and desaturation, as well as the increase in the relative content of saturated FA at 10% CO2. It was demonstrated that, after one-day-long CO2 stress, the MGDG/DGDG ratio increased fourfold without change in the sum of their FA, which indicates the increase in the proportion of lipids predisposed to micellar (hexagonal phase) but not lamellar structure formation. Under short-term CO2 stress, the ratio of ω3/ω6 FA increased and the content of E-16:1ω13 FA in phosphatidylglycerols increased sharply. The drop in protein content especially in the photosystem I (PSI) preparations, as well as diminishing the ratio of F 700-to-F 686 nm fluorescence (F 700/F 686) under short-term CO2 stress argued for the significant damage to PSI. The reversibility of these changes at more prolonged treatment (7 and 10 days) demonstrated that D. salina cells could restore the functional activity of PSI. The lower level of F 700/F 686, chlorophyll a (Chla)/Chlb, and ω3/ω6 FA ratio in line with the higher level of E-16:1ω13 in the cells growing for a long time at the high CO2 concentration is characteristic for the new structural and functional state of the photosynthetic apparatus providing for the effective photosynthesis of D. salina under these conditions.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off