Changes in elemental and isotopic composition accompanying larval growth and metamorphosis of the moor frog

Changes in elemental and isotopic composition accompanying larval growth and metamorphosis of the... A variety of early ontogenetic events of anuran species (growth, structural and biochemical diversification, metamorphosis) offers a unique opportunity to evaluate the effectiveness and application limits of mass spectrometry method for the analysis of metabolic and transformation events in developing organisms. The dynamics of relative carbon and nitrogen contents and stable isotopes of these elements during larval development in the period of metamorphosis climax and after its conclusion in moor frog specimens developing in their natural habitat and in vitro on a referent diet are traced. A decrease in C/N ratio and enrichment of the tissues with heavy stable isotopes of carbon and nitrogen during embryonal and larval development (prior to the beginning of independent feeding) indicates the increase in the portion and variety of proteins, accompanied by consumption of yolk lipids. The relative nitrogen content increase and C/N ratio decreases with the growth and development of independently feeding tadpoles, which indicates surpassing increase of the portion of proteins in tissues. In growing tadpoles, the rates of tissue renewal in general and rates of protein metabolism in particular affect the kinetics of changes of tissue isotope composition, which approaches isotope composition of the consumed food. A decrease in С/N ratio in the bodies of metamorphs during mass tissue decomposition is indicative of continuing reconstruction of larval organs and growth of anlage of definitive organs. Significant increase of C/N ratio and depletion of liver samples by heavy carbon isotopes are associated with intensive synthesis and reservation of lipids within the organ. Strong enrichment of metamorphs’ tissues with heavy nitrogen isotope indicates the substitution of ammoniotelic type of nitrogen metabolism by urotelic type. Decrease in C/N ratio and enrichment of tissues by heavy carbon isotope may be connected to intensive oxidation of lipids, which supports the growing energy costs of terrestrial underyearlings. Relative contents of heavy nitrogen isotope in the tissues of underyearlings does not change compared to the tissues of metamorphs. Russian Journal of Developmental Biology Springer Journals

Changes in elemental and isotopic composition accompanying larval growth and metamorphosis of the moor frog

Loading next page...
Pleiades Publishing
Copyright © 2017 by Pleiades Publishing, Inc.
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial