Changes in a coflowing jet structure caused by acoustic forcing

Changes in a coflowing jet structure caused by acoustic forcing In the present work, the changes in the basic turbulence field of an axisymmetric jet in a coflow when acoustic forcing is applied are investigated. The main objective is to discriminate between changes produced by the acoustic forcing and those produced by the presence of solid particles in a two-phase flow. Power spectra of the axial velocities, u(t), are analyzed to reinforce the idea of the existence of a natural frequency. Time-averaged data are used to characterize the basic flow. This basic flow is compared with the flow altered by the acoustic forcing. By smoothing the phase-averaged rms data (mean statistical curve), the general behavior of the instantaneous fluctuations are unveiled and compared with that of the natural (unforced) jet. In this way, it can be seen that rms values in the forced cases are higher than in the unforced ones, due to the contribution of the external forcing. However, once the coherent structures are extinguished, both forced and unforced jets show a similar trend. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Changes in a coflowing jet structure caused by acoustic forcing

Loading next page...
 
/lp/springer_journal/changes-in-a-coflowing-jet-structure-caused-by-acoustic-forcing-a4lK0JXSwE
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0769-8
Publisher site
See Article on Publisher Site

Abstract

In the present work, the changes in the basic turbulence field of an axisymmetric jet in a coflow when acoustic forcing is applied are investigated. The main objective is to discriminate between changes produced by the acoustic forcing and those produced by the presence of solid particles in a two-phase flow. Power spectra of the axial velocities, u(t), are analyzed to reinforce the idea of the existence of a natural frequency. Time-averaged data are used to characterize the basic flow. This basic flow is compared with the flow altered by the acoustic forcing. By smoothing the phase-averaged rms data (mean statistical curve), the general behavior of the instantaneous fluctuations are unveiled and compared with that of the natural (unforced) jet. In this way, it can be seen that rms values in the forced cases are higher than in the unforced ones, due to the contribution of the external forcing. However, once the coherent structures are extinguished, both forced and unforced jets show a similar trend.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 31, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off