Challenges, Tools and Applications of Tracking Algorithms in the Numerical Modelling of Cracks in Concrete and Masonry Structures

Challenges, Tools and Applications of Tracking Algorithms in the Numerical Modelling of Cracks in... The importance of crack propagation in the structural behaviour of concrete and masonry structures has led to the development of a wide range of finite element methods for crack simulation. A common standpoint in many of them is the use of tracking algorithms, which identify and designate the location of cracks within the analysed structure. In this way, the crack modelling techniques, smeared or discrete, are applied only to a restricted part of the discretized domain. This paper presents a review of finite element approaches to cracking focusing on the development and use of tracking algorithms. These are presented in four categories according to the information necessary for the definition and storage of the crack-path. In addition to that, the most utilised criteria for the selection of the crack propagation direction are summarized. The various algorithmic issues involved in the development of a tracking algorithm are discussed through the presentation of a local tracking algorithm based on the smeared crack approach. Challenges such as the modelling of arbitrary and multiple cracks propagating towards more than one direction, as well as multi-directional and intersecting cracking, are detailed. The presented numerical model is applied to the analysis of small- and large-scale http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Computational Methods in Engineering Springer Journals

Challenges, Tools and Applications of Tracking Algorithms in the Numerical Modelling of Cracks in Concrete and Masonry Structures

Loading next page...
 
/lp/springer_journal/challenges-tools-and-applications-of-tracking-algorithms-in-the-oxeIUoWkc0
Publisher
Springer Journals
Copyright
Copyright © 2018 by CIMNE, Barcelona, Spain
Subject
Engineering; Mathematical and Computational Engineering
ISSN
1134-3060
eISSN
1886-1784
D.O.I.
10.1007/s11831-018-9274-3
Publisher site
See Article on Publisher Site

Abstract

The importance of crack propagation in the structural behaviour of concrete and masonry structures has led to the development of a wide range of finite element methods for crack simulation. A common standpoint in many of them is the use of tracking algorithms, which identify and designate the location of cracks within the analysed structure. In this way, the crack modelling techniques, smeared or discrete, are applied only to a restricted part of the discretized domain. This paper presents a review of finite element approaches to cracking focusing on the development and use of tracking algorithms. These are presented in four categories according to the information necessary for the definition and storage of the crack-path. In addition to that, the most utilised criteria for the selection of the crack propagation direction are summarized. The various algorithmic issues involved in the development of a tracking algorithm are discussed through the presentation of a local tracking algorithm based on the smeared crack approach. Challenges such as the modelling of arbitrary and multiple cracks propagating towards more than one direction, as well as multi-directional and intersecting cracking, are detailed. The presented numerical model is applied to the analysis of small- and large-scale

Journal

Archives of Computational Methods in EngineeringSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off