CGRP Receptors in the Gerbil Spiral Modiolar Artery Mediate a Sustained Vasodilation via a Transient cAMP-mediated Ca2+-decrease

CGRP Receptors in the Gerbil Spiral Modiolar Artery Mediate a Sustained Vasodilation via a... Alteration of cochlear blood flow may be involved in the etiology of inner ear disorders like sudden hearing loss, fluctuating hearing loss and tinnitus. The aim of the present study was to localize the vasodilator calcitonin gene-related peptide (CGRP) and to identify CGRP receptors and their signaling pathways in the gerbil spiral modiolar artery (SMA) that provides the main blood supply of the cochlea. CGRP was localized in perivascular nerves by immunocytochemistry. The vascular diameter and cytosolic Ca2+ concentration [Ca2+]i in the smooth muscle cells were measured simultaneously with videomicroscopy and fluo-4-microfluorometry. Calcitonin receptor-like receptor (CRLR) mRNA was identified by RT-PCR as a specific 288 bp fragment in total RNA isolated from the vascular wall. The SMA was preconstricted by a 2-min application of 1 nM endothelin-1 (ET1). CGRP, forskolin, and dibutyryl-cAMP caused a vasodilation (EC50 = 0.1 nM, 0.3 mM, and 20 mM). CGRP and forskolin caused an increase in cAMP production and a transient decrease in the [Ca2+]i. The CGRP-induced vasodilation was antagonized by CGRP8-37 (KDB = 2 mM). The K+-channel blockers iberiotoxin and glibenclamide partially prevented the CGRP- or forskolin-induced vasodilations but failed to reverse these vasodilations. These results demonstrate that CGRP is present in perivascular nerves and causes a vasodilation of the ET1-preconstricted SMA. The data suggest that this vasodilation is mediated by an increase in the cytosolic cAMP concentration, a transient activation of iberiotoxin-sensitive BK and glibenclamide-sensitive KATP K+ channels, a transient decrease in the [Ca2+]i and a long-lasting Ca2+ desensitization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

CGRP Receptors in the Gerbil Spiral Modiolar Artery Mediate a Sustained Vasodilation via a Transient cAMP-mediated Ca2+-decrease

Loading next page...
 
/lp/springer_journal/cgrp-receptors-in-the-gerbil-spiral-modiolar-artery-mediate-a-fvBbeB66JP
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-002-1017-5
Publisher site
See Article on Publisher Site

Abstract

Alteration of cochlear blood flow may be involved in the etiology of inner ear disorders like sudden hearing loss, fluctuating hearing loss and tinnitus. The aim of the present study was to localize the vasodilator calcitonin gene-related peptide (CGRP) and to identify CGRP receptors and their signaling pathways in the gerbil spiral modiolar artery (SMA) that provides the main blood supply of the cochlea. CGRP was localized in perivascular nerves by immunocytochemistry. The vascular diameter and cytosolic Ca2+ concentration [Ca2+]i in the smooth muscle cells were measured simultaneously with videomicroscopy and fluo-4-microfluorometry. Calcitonin receptor-like receptor (CRLR) mRNA was identified by RT-PCR as a specific 288 bp fragment in total RNA isolated from the vascular wall. The SMA was preconstricted by a 2-min application of 1 nM endothelin-1 (ET1). CGRP, forskolin, and dibutyryl-cAMP caused a vasodilation (EC50 = 0.1 nM, 0.3 mM, and 20 mM). CGRP and forskolin caused an increase in cAMP production and a transient decrease in the [Ca2+]i. The CGRP-induced vasodilation was antagonized by CGRP8-37 (KDB = 2 mM). The K+-channel blockers iberiotoxin and glibenclamide partially prevented the CGRP- or forskolin-induced vasodilations but failed to reverse these vasodilations. These results demonstrate that CGRP is present in perivascular nerves and causes a vasodilation of the ET1-preconstricted SMA. The data suggest that this vasodilation is mediated by an increase in the cytosolic cAMP concentration, a transient activation of iberiotoxin-sensitive BK and glibenclamide-sensitive KATP K+ channels, a transient decrease in the [Ca2+]i and a long-lasting Ca2+ desensitization.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Oct 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off