Ceramic foam substrates for automotive catalyst applications: fluid mechanic analysis

Ceramic foam substrates for automotive catalyst applications: fluid mechanic analysis Several properties of ceramic foams render them promising substrates for various industrial processes. For automotive applications, the foam properties that need to be further studied include the substrate impact on the exhaust gas flow, in terms of pressure drop and flow uniformity. In this paper, pressure drop measurements are performed with different honeycomb and ceramic foam substrates, and pressure drop correlations are discussed. The flow uniformity upstream and downstream of the substrates is evaluated using particle image velocimetry. The results show that ceramic foam substrates induce higher pressure drop, while increasing the uniformity of the flow. In contrast to honeycomb monoliths, the flow uniformity downstream of ceramic foams does not decrease with increasing flow velocity. The higher flow uniformity of ceramic foams is not only caused by their higher pressure drop, but also by flow homogenization that occurs inside the ceramic foam structure, as a result of the momentum exchange perpendicular to the main flow direction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Ceramic foam substrates for automotive catalyst applications: fluid mechanic analysis

Loading next page...
 
/lp/springer_journal/ceramic-foam-substrates-for-automotive-catalyst-applications-fluid-SJLY4YTwuY
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0653-2
Publisher site
See Article on Publisher Site

Abstract

Several properties of ceramic foams render them promising substrates for various industrial processes. For automotive applications, the foam properties that need to be further studied include the substrate impact on the exhaust gas flow, in terms of pressure drop and flow uniformity. In this paper, pressure drop measurements are performed with different honeycomb and ceramic foam substrates, and pressure drop correlations are discussed. The flow uniformity upstream and downstream of the substrates is evaluated using particle image velocimetry. The results show that ceramic foam substrates induce higher pressure drop, while increasing the uniformity of the flow. In contrast to honeycomb monoliths, the flow uniformity downstream of ceramic foams does not decrease with increasing flow velocity. The higher flow uniformity of ceramic foams is not only caused by their higher pressure drop, but also by flow homogenization that occurs inside the ceramic foam structure, as a result of the momentum exchange perpendicular to the main flow direction.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 10, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off