Cellular pharmacology studies of anticancer agents: recommendations from the EORTC-PAMM group

Cellular pharmacology studies of anticancer agents: recommendations from the EORTC-PAMM group An increasing number of manuscripts focus on the in vitro evaluation of established and novel anti-tumor agents in experimental models. Whilst the design of such in vitro assays is inherently flexible, some of these studies lack the minimum information necessary to critically evaluate their relevance or have been carried out under unsuitable conditions. The use of appropriate and robust methods and experimental design has important implications for generating results that are reliable, relevant, and reproducible. The Pharmacology and Molecular Mechanisms (PAMM) group of the European Organization for Research and Treatment of Cancer (EORTC) is the largest group of academic scientists working on drug development and bundle decades of expertise in this field. This position paper addresses all researchers with an interest in the preclinical and cellular pharmacology of anti-tumor agents and aims at generating basic recommendations for the correct use of compounds to be tested for anti-tumor activity using a range of preclinical cellular models of cancer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cancer Chemotherapy and Pharmacology Springer Journals

Cellular pharmacology studies of anticancer agents: recommendations from the EORTC-PAMM group

Loading next page...
 
/lp/springer_journal/cellular-pharmacology-studies-of-anticancer-agents-recommendations-E94LpFD7mr
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Medicine & Public Health; Oncology; Pharmacology/Toxicology; Cancer Research
ISSN
0344-5704
eISSN
1432-0843
D.O.I.
10.1007/s00280-017-3502-7
Publisher site
See Article on Publisher Site

Abstract

An increasing number of manuscripts focus on the in vitro evaluation of established and novel anti-tumor agents in experimental models. Whilst the design of such in vitro assays is inherently flexible, some of these studies lack the minimum information necessary to critically evaluate their relevance or have been carried out under unsuitable conditions. The use of appropriate and robust methods and experimental design has important implications for generating results that are reliable, relevant, and reproducible. The Pharmacology and Molecular Mechanisms (PAMM) group of the European Organization for Research and Treatment of Cancer (EORTC) is the largest group of academic scientists working on drug development and bundle decades of expertise in this field. This position paper addresses all researchers with an interest in the preclinical and cellular pharmacology of anti-tumor agents and aims at generating basic recommendations for the correct use of compounds to be tested for anti-tumor activity using a range of preclinical cellular models of cancer.

Journal

Cancer Chemotherapy and PharmacologySpringer Journals

Published: Dec 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off