Cellular complexity in subcortical white matter: a distributed control circuit?

Cellular complexity in subcortical white matter: a distributed control circuit? The subcortical white matter (SWM) has been traditionally considered as a site for passive–neutral–information transfer through cerebral cortex association and projection fibers. Yet, the presence of subcortical neuronal and glial “interstitial” cells expressing immunolabelled neurotransmitters/neuromodulators and synaptic vesicular proteins, and recent immunohistochemical and electrophysiological observations on the rat visual cortex as well as interactive regulation of myelinating processes support the possibility that SWM nests subcortical, regionally variable, distributed neuronal–glial circuits, that could influence information transfer. Their hypothetical involvement in regulating the timing and signal transfer probability at the SWM axonal components ought to be considered and experimentally analysed. Thus, the “interstitial” neuronal cells—associated with local glial cells—traditionally considered to be vestigial and functionally inert under normal conditions, they may well turn to be critical in regulating information transfer at the SWM. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Structure and Function Springer Journals

Cellular complexity in subcortical white matter: a distributed control circuit?

Loading next page...
 
/lp/springer_journal/cellular-complexity-in-subcortical-white-matter-a-distributed-control-SJ7OQrYDYH
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Biomedicine; Neurosciences; Cell Biology; Neurology
ISSN
1863-2653
eISSN
1863-2661
D.O.I.
10.1007/s00429-018-1609-1
Publisher site
See Article on Publisher Site

Abstract

The subcortical white matter (SWM) has been traditionally considered as a site for passive–neutral–information transfer through cerebral cortex association and projection fibers. Yet, the presence of subcortical neuronal and glial “interstitial” cells expressing immunolabelled neurotransmitters/neuromodulators and synaptic vesicular proteins, and recent immunohistochemical and electrophysiological observations on the rat visual cortex as well as interactive regulation of myelinating processes support the possibility that SWM nests subcortical, regionally variable, distributed neuronal–glial circuits, that could influence information transfer. Their hypothetical involvement in regulating the timing and signal transfer probability at the SWM axonal components ought to be considered and experimentally analysed. Thus, the “interstitial” neuronal cells—associated with local glial cells—traditionally considered to be vestigial and functionally inert under normal conditions, they may well turn to be critical in regulating information transfer at the SWM.

Journal

Brain Structure and FunctionSpringer Journals

Published: Jan 24, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off