Cells of origin of pancreatic neoplasms

Cells of origin of pancreatic neoplasms Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease associated with poor prognosis, despite recent medical advances. It is of great importance to understand the initial events and cells of origin of pancreatic cancer to prevent the development and progression of PDAC. There are three distinct precursor lesions that develop into PDAC: pancreatic intraepithelial neoplasms (PanINs), intraductal papillary mucinous neoplasms (IPMNs), and mucinous cystic neoplasms (MCNs). Studies on genetically engineered mouse models have revealed that the initiation and development of these lesions largely depend on genetic alterations. These lesions originate from different populations in the pancreas. PanIN development seems to be the result of the transdifferentiation of acinar cells, whereas IPMNs most likely arise from the progenitor niche of the pancreatic ductal epithelium. Pancreatic carcinogenesis is dependent on various events, including gene alterations, environmental insults, and cell types. However, further studies are needed to fully understand the initial processes of pancreatic cancer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Surgery Today Springer Journals

Cells of origin of pancreatic neoplasms

Loading next page...
 
/lp/springer_journal/cells-of-origin-of-pancreatic-neoplasms-jwwimAPHUX
Publisher
Springer Japan
Copyright
Copyright © 2017 by Springer Japan
Subject
Medicine & Public Health; Surgery; Surgical Oncology
ISSN
0941-1291
eISSN
1436-2813
D.O.I.
10.1007/s00595-017-1501-2
Publisher site
See Article on Publisher Site

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease associated with poor prognosis, despite recent medical advances. It is of great importance to understand the initial events and cells of origin of pancreatic cancer to prevent the development and progression of PDAC. There are three distinct precursor lesions that develop into PDAC: pancreatic intraepithelial neoplasms (PanINs), intraductal papillary mucinous neoplasms (IPMNs), and mucinous cystic neoplasms (MCNs). Studies on genetically engineered mouse models have revealed that the initiation and development of these lesions largely depend on genetic alterations. These lesions originate from different populations in the pancreas. PanIN development seems to be the result of the transdifferentiation of acinar cells, whereas IPMNs most likely arise from the progenitor niche of the pancreatic ductal epithelium. Pancreatic carcinogenesis is dependent on various events, including gene alterations, environmental insults, and cell types. However, further studies are needed to fully understand the initial processes of pancreatic cancer.

Journal

Surgery TodaySpringer Journals

Published: Mar 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off