Cell Electrofusion in Centrifuged Erythrocyte Pellets Assessed by Dielectric Spectroscopy

Cell Electrofusion in Centrifuged Erythrocyte Pellets Assessed by Dielectric Spectroscopy We have characterized cell electrofusion in cell pellets by dielectric spectroscopy. Cell pellets were formed from horse erythrocyte suspensions by centrifugation and were subjected to intense AC pulses. The dielectric spectra of the pellets were measured over a frequency range of 10 Hz to 10 MHz. The application of AC pulses caused low-frequency (LF) dielectric relaxation below about 100 kHz. The LF dielectric relaxation was markedly affected not only by pretreatment of cells at 50 °C, which disrupts the spectrin network of erythrocytes, but also by the parameters of the AC pulses (frequency of the sine wave and repeat count of the pulses). The occurrence of the LF dielectric relaxation was qualitatively accounted for by modeling fusion products in the pellet by prolate spheroidal cells whose long axes run parallel to the applied electric field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Cell Electrofusion in Centrifuged Erythrocyte Pellets Assessed by Dielectric Spectroscopy

Loading next page...
 
/lp/springer_journal/cell-electrofusion-in-centrifuged-erythrocyte-pellets-assessed-by-ZeHjfuAoWI
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9843-4
Publisher site
See Article on Publisher Site

Abstract

We have characterized cell electrofusion in cell pellets by dielectric spectroscopy. Cell pellets were formed from horse erythrocyte suspensions by centrifugation and were subjected to intense AC pulses. The dielectric spectra of the pellets were measured over a frequency range of 10 Hz to 10 MHz. The application of AC pulses caused low-frequency (LF) dielectric relaxation below about 100 kHz. The LF dielectric relaxation was markedly affected not only by pretreatment of cells at 50 °C, which disrupts the spectrin network of erythrocytes, but also by the parameters of the AC pulses (frequency of the sine wave and repeat count of the pulses). The occurrence of the LF dielectric relaxation was qualitatively accounted for by modeling fusion products in the pellet by prolate spheroidal cells whose long axes run parallel to the applied electric field.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 25, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off