Cell differentiation during the larval development of the ophiuroid Amphipholis kochii Lütken, 1872 (Echinodermata: Ophiuroidea)

Cell differentiation during the larval development of the ophiuroid Amphipholis kochii Lütken,... The differentiation of the ectodermal, entodermal, and mesodermal cell lines in developing plutei of the ophiuroid Amphipholis kochii was examined using electron microscopy and the immunochemical staining technique. The ectodermal cells form the pseudostratified epithelium of the ciliary band, the flattened epithelium of the body wall, and the esophageal epithelium. The epithelium of the ciliary band consists of ciliated and mucous cells; at its base is an axonal tract formed of the processes of neurons. The serotoninergic neurons form two lateral ganglia located along the paraoral ciliary band and the posterolateral arms’ ciliary band. The prominent features of the neurons are large size, the presence of a cilium, an electron-light cytoplasm filled with microvesicles with neurotransmitters, and a large nucleus with a predominant euchromatin. The ectoderm cells (except mucous cells) are characterized by the presence of a cilium surrounded by a collar of microvilli and a thin layer of apical extracellular matrix. The entodermal cells form the digestive tract epithelium and differentiate into four cell types: type I and II cells probably function in the nutrient uptake and assimilation; type III cells perhaps secrete digestive enzymes; and myoepithelial cells that constitute the cardiac and pyloric sphincters and the anus. Sclerenchymatous cells, which are the descendants of the primary mesenchyme, form a syncytium around the developing spicules. The biomineralization process is intrasyncytial, the ophioplutei spicules retain the cytoplasmic covering throughout the period of larval development. The secondary mesenchyme gives rise to smooth muscle cells and amebocytes. Muscle cells compose the circumesophageal musculature, the cell processes of each “muscle band” seem to fuse together. At the base of the preoral band are two symmetrically located groups of muscles, viz., the anterior dilators. Amebocytes function in excretion either near the epidermis or are able to penetrate through the epidermis and excrete wastes into the external environment. The mesoderm formed by the enterocoely gives rise to three pairs of coeloms; their cells remain unspecialized during the entire period of larval development. Results of this study are compared with the micro- and neuroanatomy of the larvae of other echinoderms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Marine Biology Springer Journals

Cell differentiation during the larval development of the ophiuroid Amphipholis kochii Lütken, 1872 (Echinodermata: Ophiuroidea)

Loading next page...
 
/lp/springer_journal/cell-differentiation-during-the-larval-development-of-the-ophiuroid-HeGDIPzOGB
Publisher
Springer Journals
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Freshwater & Marine Ecology
ISSN
1063-0740
eISSN
1608-3377
D.O.I.
10.1134/S1063074011050051
Publisher site
See Article on Publisher Site

Abstract

The differentiation of the ectodermal, entodermal, and mesodermal cell lines in developing plutei of the ophiuroid Amphipholis kochii was examined using electron microscopy and the immunochemical staining technique. The ectodermal cells form the pseudostratified epithelium of the ciliary band, the flattened epithelium of the body wall, and the esophageal epithelium. The epithelium of the ciliary band consists of ciliated and mucous cells; at its base is an axonal tract formed of the processes of neurons. The serotoninergic neurons form two lateral ganglia located along the paraoral ciliary band and the posterolateral arms’ ciliary band. The prominent features of the neurons are large size, the presence of a cilium, an electron-light cytoplasm filled with microvesicles with neurotransmitters, and a large nucleus with a predominant euchromatin. The ectoderm cells (except mucous cells) are characterized by the presence of a cilium surrounded by a collar of microvilli and a thin layer of apical extracellular matrix. The entodermal cells form the digestive tract epithelium and differentiate into four cell types: type I and II cells probably function in the nutrient uptake and assimilation; type III cells perhaps secrete digestive enzymes; and myoepithelial cells that constitute the cardiac and pyloric sphincters and the anus. Sclerenchymatous cells, which are the descendants of the primary mesenchyme, form a syncytium around the developing spicules. The biomineralization process is intrasyncytial, the ophioplutei spicules retain the cytoplasmic covering throughout the period of larval development. The secondary mesenchyme gives rise to smooth muscle cells and amebocytes. Muscle cells compose the circumesophageal musculature, the cell processes of each “muscle band” seem to fuse together. At the base of the preoral band are two symmetrically located groups of muscles, viz., the anterior dilators. Amebocytes function in excretion either near the epidermis or are able to penetrate through the epidermis and excrete wastes into the external environment. The mesoderm formed by the enterocoely gives rise to three pairs of coeloms; their cells remain unspecialized during the entire period of larval development. Results of this study are compared with the micro- and neuroanatomy of the larvae of other echinoderms.

Journal

Russian Journal of Marine BiologySpringer Journals

Published: Nov 9, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off