Cell Death Induced by Mild Physical Perturbations Could Be Related to Transient Plasma Membrane Modifications

Cell Death Induced by Mild Physical Perturbations Could Be Related to Transient Plasma Membrane... An understanding of membrane destabilization induced by osmotic treatments is important to better control cell survival during biotechnological processes. The effects on the membranes of the yeast Saccharomyces cerevisiae of perturbations similar in intensity (same amount of energy) but differing in the source type (heat, compression and osmotic gradient) were investigated. The anisotropy of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene was measured before and after each treatment to assess the reversibility of the membrane changes related to each treatment. Except for heat shock at 75°C, changes in membrane fluidity were reversible after the return to initial conditions, showing that two kinds of physical stress can be distinguished regarding the reversibility of membrane changes: high and mild energy stresses. With the application of osmotic gradients, anisotropy was assessed during treatment with five osmotic pressure levels from 30.7 to 95.4 MPa with two different yeast strains and related to the rate of cell death caused by each stress. The exposure of cells to increasing osmotic pressures involved a progressive lowering of membrane anisotropy during lethal perturbations. Osmotic stresses associated with reversible fluidity changes of increasing intensity in the membrane led to proportional death rates and time-dependant cell death of increasing rapidity during the application of the stress. Finally, a hypothesis relating the extent of membrane structural changes to the kinetic of cell death is proposed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Cell Death Induced by Mild Physical Perturbations Could Be Related to Transient Plasma Membrane Modifications

Loading next page...
Copyright © 2007 by Springer Science+Business Media, LLC
Life Sciences; Human Physiology ; Biochemistry, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial