Cell Cycle Regulated D3-type Cyclins form Active Complexes with Plant-specific B-type Cyclin-dependent Kinase in vitro

Cell Cycle Regulated D3-type Cyclins form Active Complexes with Plant-specific B-type... Tobacco (Nicotiana tabacum L.) cv Bright Yellow-2 (BY-2) cells are the most highly synchronizable plant cell culture, and previously we used them to analyze cell cycle regulation of cyclin-dependent kinases (CDKs) containing the cyclin binding motifs PSTAIRE (CDKA) and PPTA/TLRE (CDKB). Here we describe the analysis of tobacco CycD3 cyclins whose transcripts predominantly accumulate during G2 to M phase, which represents a unique feature of this type of cyclin D in plants. Although protein levels of CycD3s fluctuate with different patterns during the cell cycle, kinase assays revealed that the CycD3-associated kinases phosphorylate histone H1 and the tobacco retinoblastoma related protein (NtRBR1) with two peaks at the G1/S and G2/M boundaries. In vitro pull-down assays revealed that cell cycle-regulated CycD3s bind to CDKA, but more weakly than does CycD3;3, and that they also bind to CDKB and the CDK inhibitor NtKIS1a. Mutations in the cyclin box of the CycD3s showed that two amino acids are required for binding with CDKA and NtKIS1a, but no diminished interaction was observed with CDKB. A reconstituted kinase assay was adapted for use with bacterially produced GST-CycD3s, and kinase activity could be activated by incubation of extracts from exponentially growing BY-2 cells. Such activated complexes contained CDKA and CDKB, and the reconstituted GST-CycD3 mutants, retaining binding ability to CDKB, showed kinase activity, suggesting that these cell cycle-regulated CycD3s form active complexes with both A- and B-type CDKs in vitro. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Cell Cycle Regulated D3-type Cyclins form Active Complexes with Plant-specific B-type Cyclin-dependent Kinase in vitro

Loading next page...
 
/lp/springer_journal/cell-cycle-regulated-d3-type-cyclins-form-active-complexes-with-plant-6CDo23XfKn
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-0014-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial