Cell cycle-dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley

Cell cycle-dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley Histone acetylation affects chromatin conformation and regulates various cellular functions, such as transcription and cell cycle progression. Although mitosis dependent transcriptional silencing and large-scale chromatin structural changes are well established, acetylation of histone H4 during the mitosis is poorly understood in plants. Here, the dynamics of acetylation of histone H4 in defined genome regions has been examined in the fixed barley cells throughout the mitosis by three-dimensional microscopy. Patterns of strong acetylation of the two lysine residues K5 and K16 of histone H4 in the barley genomes were found to be different. In interphase nuclei, H4 acetylated at K16 was associated with the gene-rich, telomere-associated hemispheres, whereas K5 acetylation was detected in centromeric regions where the heterochromatin is distributed. Regions of strong K5 acetylation changed dynamically as the cell cycle proceeded. At prometaphase, centromeric acetylation at K5 decreased suddenly, with accompanying rapid increases of acetylation in the nucleolar organizing regions (NORs). Reverse changes occurred at telophase. On the other hand, the strongly acetylated regions of the K16 showed changes compatible with transcriptional activities and chromosome condensation throughout the cell cycle. Telomeric acetylation at K16 was detected throughout the cell cycle, although it was reduced at metaphase which corresponds to the most condensed stage of the chromosomes. It is concluded that dynamic changes in H4 acetylation occur in a lysine residue-, stage-, and region-specific manner and that they correlate with changes in the chromosome structure through the cell cycle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Cell cycle-dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley

Loading next page...
 
/lp/springer_journal/cell-cycle-dependent-and-lysine-residue-specific-dynamic-changes-of-FimX0w28Nc
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1015554124675
Publisher site
See Article on Publisher Site

Abstract

Histone acetylation affects chromatin conformation and regulates various cellular functions, such as transcription and cell cycle progression. Although mitosis dependent transcriptional silencing and large-scale chromatin structural changes are well established, acetylation of histone H4 during the mitosis is poorly understood in plants. Here, the dynamics of acetylation of histone H4 in defined genome regions has been examined in the fixed barley cells throughout the mitosis by three-dimensional microscopy. Patterns of strong acetylation of the two lysine residues K5 and K16 of histone H4 in the barley genomes were found to be different. In interphase nuclei, H4 acetylated at K16 was associated with the gene-rich, telomere-associated hemispheres, whereas K5 acetylation was detected in centromeric regions where the heterochromatin is distributed. Regions of strong K5 acetylation changed dynamically as the cell cycle proceeded. At prometaphase, centromeric acetylation at K5 decreased suddenly, with accompanying rapid increases of acetylation in the nucleolar organizing regions (NORs). Reverse changes occurred at telophase. On the other hand, the strongly acetylated regions of the K16 showed changes compatible with transcriptional activities and chromosome condensation throughout the cell cycle. Telomeric acetylation at K16 was detected throughout the cell cycle, although it was reduced at metaphase which corresponds to the most condensed stage of the chromosomes. It is concluded that dynamic changes in H4 acetylation occur in a lysine residue-, stage-, and region-specific manner and that they correlate with changes in the chromosome structure through the cell cycle.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off