Cell–Cell Electrofusion: Optimization of Electric Field Amplitude and Hypotonic Treatment for Mouse Melanoma (B16-F1) and Chinese Hamster Ovary (CHO) Cells

Cell–Cell Electrofusion: Optimization of Electric Field Amplitude and Hypotonic Treatment for... Efficient electroporation of cells in physical contact induces cell fusion, and this process is known as electrofusion. It has been shown that appropriate hypotonic treatment of cells before the application of electric pulses can cause a significant increase in electrofusion efficiency. First, the amplitudes of the electric field were determined spectrofluorometrically, where sufficient permeabilization in hypotonic buffer occurred for B16-F1 and CHO cells. In further electrofusion experiments 14 ± 4% of fused cells for B16-F1 and 6 ± 1% for CHO was achieved. These electrofusion efficiencies, determined by double staining and fluorescence microcopy, are comparable to those of other published studies. It was also confirmed that successful electroporation does not necessarily guarantee high electrofusion efficiency due to biological factors involved in the electrofusion process. Furthermore, not only the extension of electrofusion but also cell survival depends on the cell line used. Further studies are needed to improve overall cell survival after electroporation in hypotonic buffer, which was significantly reduced, especially for B16-F1 cells. Another contribution of this report is the description of a simple modification of the adherence method for formation of spontaneous cell contact, while cells preserve their spherical shape. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Cell–Cell Electrofusion: Optimization of Electric Field Amplitude and Hypotonic Treatment for Mouse Melanoma (B16-F1) and Chinese Hamster Ovary (CHO) Cells

Loading next page...
 
/lp/springer_journal/cell-cell-electrofusion-optimization-of-electric-field-amplitude-and-pFPsjnl98c
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-010-9272-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial