Cell- and tissue-specific localization and regulation of the epithiospecifier protein in Arabidopsis thaliana

Cell- and tissue-specific localization and regulation of the epithiospecifier protein in... The glucosinolate-myrosinase system found in plants of the order Brassicales is one of the best studied plant defense systems. Hydrolysis of the physiologically inert glucosinolates by hydrolytic enzymes called myrosinases, which only occurs upon tissue disruption, leads to the formation of biologically active compounds. The chemical nature of the hydrolysis products depends on the presence or absence of supplementary proteins, such as epithiospecifier proteins (ESPs). ESPs promote the formation of epithionitriles and simple nitriles at the expense of the corresponding isothiocyanates which are formed through spontaneous rearrangement of the aglucone core structure. While isothiocyanates are toxic to a wide range of organisms, including insects, the ecological significance of nitrile formation and thus the role of ESP in plant-insect interactions is unclear. Here, we identified ESP-expressing cells in various organs and several developmental stages of different Arabidopsis thaliana ecotypes by immunolocalization. In the ecotype Landsberg erecta, ESP was found to be consistently present in the epidermal cells of all aerial parts except the anthers and in S-cells of the stem below the inflorescence. Analyses of ESP expression by quantitative real-time PCR, Western blotting, and ESP activity assays suggest that plants control the outcome of glucosinolate hydrolysis by regulation of ESP at both the transcriptional and the post-transcriptional levels. The localization of ESP in the epidermal cell layers of leaves, stems and reproductive organs supports the hypothesis that this protein has a specific function in defense against herbivores and pathogens. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Cell- and tissue-specific localization and regulation of the epithiospecifier protein in Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/cell-and-tissue-specific-localization-and-regulation-of-the-5vKRZcqC0q
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9143-1
Publisher site
See Article on Publisher Site

Abstract

The glucosinolate-myrosinase system found in plants of the order Brassicales is one of the best studied plant defense systems. Hydrolysis of the physiologically inert glucosinolates by hydrolytic enzymes called myrosinases, which only occurs upon tissue disruption, leads to the formation of biologically active compounds. The chemical nature of the hydrolysis products depends on the presence or absence of supplementary proteins, such as epithiospecifier proteins (ESPs). ESPs promote the formation of epithionitriles and simple nitriles at the expense of the corresponding isothiocyanates which are formed through spontaneous rearrangement of the aglucone core structure. While isothiocyanates are toxic to a wide range of organisms, including insects, the ecological significance of nitrile formation and thus the role of ESP in plant-insect interactions is unclear. Here, we identified ESP-expressing cells in various organs and several developmental stages of different Arabidopsis thaliana ecotypes by immunolocalization. In the ecotype Landsberg erecta, ESP was found to be consistently present in the epidermal cells of all aerial parts except the anthers and in S-cells of the stem below the inflorescence. Analyses of ESP expression by quantitative real-time PCR, Western blotting, and ESP activity assays suggest that plants control the outcome of glucosinolate hydrolysis by regulation of ESP at both the transcriptional and the post-transcriptional levels. The localization of ESP in the epidermal cell layers of leaves, stems and reproductive organs supports the hypothesis that this protein has a specific function in defense against herbivores and pathogens.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 16, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off