Ceforanide: a new and efficient corrosion inhibitor for mild steel in HCl solution

Ceforanide: a new and efficient corrosion inhibitor for mild steel in HCl solution The corrosion inhibition properties of ceforanide for mild steel in HCl solution were analyzed by electrochemical impedance spectroscopy, potentiodynamic polarization, and gravimetric methods. The increase in inhibitor concentration and immersion time showed a positive effect on inhibition efficiency. The experimental data showed a frequency distribution and therefore a modeling element with frequency dispersion behavior and a constant phase element have been used. In aqueous acid solution, mild steel reacts by evolution of hydrogen. Visual observations showed that the hydrogen evolution decreased (i.e., corrosion inhibition effect increased) with increasing concentration of ceforanide. Potentiodynamic polarization study revealed that ceforanide acted as a mixed type of inhibitor. The results obtained from different methods are in good agreement. The adsorption behavior of ceforanide is experimentally investigated by contact angle measurement on metal surface. The contact angle of metal surface to the acid solution increased with inhibitor concentration; thereby confirming the increased hydrophobic nature of metal surface to the acid solution having inhibitors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Ceforanide: a new and efficient corrosion inhibitor for mild steel in HCl solution

Loading next page...
 
/lp/springer_journal/ceforanide-a-new-and-efficient-corrosion-inhibitor-for-mild-steel-in-USEK24KjK8
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0717-4
Publisher site
See Article on Publisher Site

Abstract

The corrosion inhibition properties of ceforanide for mild steel in HCl solution were analyzed by electrochemical impedance spectroscopy, potentiodynamic polarization, and gravimetric methods. The increase in inhibitor concentration and immersion time showed a positive effect on inhibition efficiency. The experimental data showed a frequency distribution and therefore a modeling element with frequency dispersion behavior and a constant phase element have been used. In aqueous acid solution, mild steel reacts by evolution of hydrogen. Visual observations showed that the hydrogen evolution decreased (i.e., corrosion inhibition effect increased) with increasing concentration of ceforanide. Potentiodynamic polarization study revealed that ceforanide acted as a mixed type of inhibitor. The results obtained from different methods are in good agreement. The adsorption behavior of ceforanide is experimentally investigated by contact angle measurement on metal surface. The contact angle of metal surface to the acid solution increased with inhibitor concentration; thereby confirming the increased hydrophobic nature of metal surface to the acid solution having inhibitors.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jul 27, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off