Cdx-2 polymorphism in the vitamin D receptor gene (VDR) marks VDR expression in monocyte/macrophages through VDR promoter methylation

Cdx-2 polymorphism in the vitamin D receptor gene (VDR) marks VDR expression in... Caudal-type homeobox protein 2 (CDX-2) is an intestine-specific transcription factor (TF), with a polymorphic binding site (Cdx-2, rs11568820, A/G) in the vitamin D receptor gene (VDR). The molecular mechanism underlying Cdx-2 association with conditions like osteoporosis, which depends on intestinal VDR expression and calcium absorption, is believed to be due to higher affinity of CDX-2 for the ancestral A allele compared to the G allele. However, it is unclear why the polymorphism is associated with diseases like tuberculosis, which is dependent on VDR expression in immune cells that do not express CDX-2. This study aimed to explain Cdx-2 variant association with immune-related conditions. We hypothesised that the effect of Cdx-2 polymor- phism on VDR expression in monocytes/macrophages, devoid of the CDX-2 TF, is indirect and dependent on circulating 25(OH)D and VDR methylation. Primary monocyte/macrophages from healthy donors (n = 100) were activated though TLR2/1 elicitation. VDR mRNA and 25(OH)D were quantified by RT-qPCR and LC-MS/MS, respectively. Genotyping and methylation analysis were done by pyrosequencing. AA vs. AG/GG showed reduced levels of 25(OH)D (P < 0.010), higher VDR promoter methylation (P < 0.050) and lower VDR mRNA induction (P < 0.050). Analysis of covariance confirmed that the effect of Cdx-2 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Immunogenetics Springer Journals

Cdx-2 polymorphism in the vitamin D receptor gene (VDR) marks VDR expression in monocyte/macrophages through VDR promoter methylation

Loading next page...
 
/lp/springer_journal/cdx-2-polymorphism-in-the-vitamin-d-receptor-gene-vdr-marks-vdr-6STacY2egA
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Biomedicine; Immunology; Human Genetics; Gene Function; Cell Biology; Allergology
ISSN
0093-7711
eISSN
1432-1211
D.O.I.
10.1007/s00251-018-1063-5
Publisher site
See Article on Publisher Site

Abstract

Caudal-type homeobox protein 2 (CDX-2) is an intestine-specific transcription factor (TF), with a polymorphic binding site (Cdx-2, rs11568820, A/G) in the vitamin D receptor gene (VDR). The molecular mechanism underlying Cdx-2 association with conditions like osteoporosis, which depends on intestinal VDR expression and calcium absorption, is believed to be due to higher affinity of CDX-2 for the ancestral A allele compared to the G allele. However, it is unclear why the polymorphism is associated with diseases like tuberculosis, which is dependent on VDR expression in immune cells that do not express CDX-2. This study aimed to explain Cdx-2 variant association with immune-related conditions. We hypothesised that the effect of Cdx-2 polymor- phism on VDR expression in monocytes/macrophages, devoid of the CDX-2 TF, is indirect and dependent on circulating 25(OH)D and VDR methylation. Primary monocyte/macrophages from healthy donors (n = 100) were activated though TLR2/1 elicitation. VDR mRNA and 25(OH)D were quantified by RT-qPCR and LC-MS/MS, respectively. Genotyping and methylation analysis were done by pyrosequencing. AA vs. AG/GG showed reduced levels of 25(OH)D (P < 0.010), higher VDR promoter methylation (P < 0.050) and lower VDR mRNA induction (P < 0.050). Analysis of covariance confirmed that the effect of Cdx-2

Journal

ImmunogeneticsSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off