CD14-mediated alterations in transcription and splicing of endogenous retroviruses after injury

CD14-mediated alterations in transcription and splicing of endogenous retroviruses after injury Increase in systemic levels of lipopolysaccharide (LPS) contributes to the pathogenesis of distant organ injury after burn. Stress signals elicited from burn influence transcriptional activities of mouse endogenous retroviruses (MuERVs) in various distant organs. The involvement of LPS pathways in the burn-mediated regulation of MuERVs in the spleen was investigated in this study. Spleen harbors substantial numbers of tissue macrophages, a key responder to LPS stimulation. Spleen tissues collected from CD14 (LPS receptor) knockout (KO) and wild type (WT) mice after burn were subjected to RT-PCR analysis of MuERV expression. There was a substantial induction of 2 bands and a marked downregulation of a band in CD14 KO mice compared to WT mice after burn. Sequence analysis of these CD14- and burn-dependent bands identified 3 new alternatively spliced and 2 defective env transcripts of MuERVs as well as novel splicing signals. Chromosomal loci of putative MuERVs sharing the unique U3 sequences of these transcripts were mapped by surveying the entire genome of C57BL/6J mice. In addition, coding potentials, transcriptional regulatory elements, and adjacent cellular genes of these putative MuERVs were analyzed. The results from these studies suggest that injury-triggered LPS/CD14 signaling events play roles in the transcriptional regulation of certain MuERVs carrying unique U3 promoter sequences. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

CD14-mediated alterations in transcription and splicing of endogenous retroviruses after injury

Loading next page...
1
 
/lp/springer_journal/cd14-mediated-alterations-in-transcription-and-splicing-of-endogenous-1Nrk2cLNg1
Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer-Verlag/Wien
Subject
LifeSciences
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-004-0358-z
Publisher site
See Article on Publisher Site

Abstract

Increase in systemic levels of lipopolysaccharide (LPS) contributes to the pathogenesis of distant organ injury after burn. Stress signals elicited from burn influence transcriptional activities of mouse endogenous retroviruses (MuERVs) in various distant organs. The involvement of LPS pathways in the burn-mediated regulation of MuERVs in the spleen was investigated in this study. Spleen harbors substantial numbers of tissue macrophages, a key responder to LPS stimulation. Spleen tissues collected from CD14 (LPS receptor) knockout (KO) and wild type (WT) mice after burn were subjected to RT-PCR analysis of MuERV expression. There was a substantial induction of 2 bands and a marked downregulation of a band in CD14 KO mice compared to WT mice after burn. Sequence analysis of these CD14- and burn-dependent bands identified 3 new alternatively spliced and 2 defective env transcripts of MuERVs as well as novel splicing signals. Chromosomal loci of putative MuERVs sharing the unique U3 sequences of these transcripts were mapped by surveying the entire genome of C57BL/6J mice. In addition, coding potentials, transcriptional regulatory elements, and adjacent cellular genes of these putative MuERVs were analyzed. The results from these studies suggest that injury-triggered LPS/CD14 signaling events play roles in the transcriptional regulation of certain MuERVs carrying unique U3 promoter sequences.

Journal

Archives of VirologySpringer Journals

Published: Nov 1, 2004

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off