Causality in the Classical Limit for Quantum Electrodynamics

Causality in the Classical Limit for Quantum Electrodynamics We use the path integral form of quantum electrodynamics (QED) to show that a causal classical limit to QED can be derived by functionally integrating over the photon coordinates, starting from an initial photon vacuum and ending in a final coherent radiation state driven by the anticipated classical charged particle trajectories. The resulting charged particle transition amplitude depends only on particle coordinates. When the $$ {\hbar} \, \to \,0 $$ ħ → 0 limit is taken, only those particle paths that are not constrained by the final radiation state are varied. These results demonstrate that the collapse from an infinity of charged particle paths, a path integral description, to causally interacting classical trajectories, a stationary-action description, is critically dependent on including final coherent state radiation and maintaining the distinction between particle paths that are free to vary and those trajectories that can be monitored by the final state radiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Foundations of Physics Springer Journals

Causality in the Classical Limit for Quantum Electrodynamics

Loading next page...
 
/lp/springer_journal/causality-in-the-classical-limit-for-quantum-electrodynamics-Px0Mvl9gL8
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Physics; History and Philosophical Foundations of Physics; Quantum Physics; Classical and Quantum Gravitation, Relativity Theory; Statistical Physics and Dynamical Systems; Classical Mechanics; Philosophy of Science
ISSN
0015-9018
eISSN
1572-9516
D.O.I.
10.1007/s10701-018-0158-z
Publisher site
See Article on Publisher Site

Abstract

We use the path integral form of quantum electrodynamics (QED) to show that a causal classical limit to QED can be derived by functionally integrating over the photon coordinates, starting from an initial photon vacuum and ending in a final coherent radiation state driven by the anticipated classical charged particle trajectories. The resulting charged particle transition amplitude depends only on particle coordinates. When the $$ {\hbar} \, \to \,0 $$ ħ → 0 limit is taken, only those particle paths that are not constrained by the final radiation state are varied. These results demonstrate that the collapse from an infinity of charged particle paths, a path integral description, to causally interacting classical trajectories, a stationary-action description, is critically dependent on including final coherent state radiation and maintaining the distinction between particle paths that are free to vary and those trajectories that can be monitored by the final state radiation.

Journal

Foundations of PhysicsSpringer Journals

Published: Mar 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off