Catechol-modified hyaluronic acid: in situ-forming hydrogels by auto-oxidation of catechol or photo-oxidation using visible light

Catechol-modified hyaluronic acid: in situ-forming hydrogels by auto-oxidation of catechol or... Mussel-inspired polymers have emerged as attractive candidates for the synthesis of injectable hydrogels with tissue-adhesive properties. In these systems, polymer crosslinking occurs via the oxidative coupling of catechol groups grafted on the polymer backbone, performed in the presence of an enzyme or a chemical oxidant. Here, we show that catechol-modified hyaluronic acid (HA-CA) can self-crosslink in physiological conditions without any requirement of oxidizing reagents. A careful rheological analysis of gelation of HA-CA solutions indicated that both the degree of substitution and the molar mass of HA-CA are key parameters controlling the gelation kinetics. Interestingly, the gelation time could be dramatically lowered by photo-oxidation of catechol using visible light in the presence of eosin Y as a photosensitizer. This strategy can be advantageously used to manage viscosity and gelation kinetics during injection, which paves the way for various biomedical applications of HA-CA including wound closure and healing as well as drug delivery. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Bulletin Springer Journals

Catechol-modified hyaluronic acid: in situ-forming hydrogels by auto-oxidation of catechol or photo-oxidation using visible light

Loading next page...
 
/lp/springer_journal/catechol-modified-hyaluronic-acid-in-situ-forming-hydrogels-by-auto-Vc2ga05HZk
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Polymer Sciences; Soft and Granular Matter, Complex Fluids and Microfluidics; Characterization and Evaluation of Materials; Physical Chemistry; Organic Chemistry
ISSN
0170-0839
eISSN
1436-2449
D.O.I.
10.1007/s00289-017-1937-y
Publisher site
See Article on Publisher Site

Abstract

Mussel-inspired polymers have emerged as attractive candidates for the synthesis of injectable hydrogels with tissue-adhesive properties. In these systems, polymer crosslinking occurs via the oxidative coupling of catechol groups grafted on the polymer backbone, performed in the presence of an enzyme or a chemical oxidant. Here, we show that catechol-modified hyaluronic acid (HA-CA) can self-crosslink in physiological conditions without any requirement of oxidizing reagents. A careful rheological analysis of gelation of HA-CA solutions indicated that both the degree of substitution and the molar mass of HA-CA are key parameters controlling the gelation kinetics. Interestingly, the gelation time could be dramatically lowered by photo-oxidation of catechol using visible light in the presence of eosin Y as a photosensitizer. This strategy can be advantageously used to manage viscosity and gelation kinetics during injection, which paves the way for various biomedical applications of HA-CA including wound closure and healing as well as drug delivery.

Journal

Polymer BulletinSpringer Journals

Published: Feb 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off