Catalytic upgrading of lignin derived bio-oil model compound using mesoporous solid catalysts

Catalytic upgrading of lignin derived bio-oil model compound using mesoporous solid catalysts The catalytic upgrading of a lignin-derived bio-oil model compound, the hydrodeoxygenation of guaiacol, was performed using mesoporous solid catalysts. Platinum supported on silica and mesoporous silica (SBA-15 and KIT-6) were used as catalysts. The level of platinum incorporation and aluminum grafting did not alter the physical properties of the supports, such as surface area and pore size distribution. On the other hand, these treatments drastically affected the catalytic activities. A catalyst with platinum alone converted guaiacol to oxygenate compounds. In contrast, a series of catalysts with both platinum incorporation and aluminum grafting enhanced hydrodeoxygenation by converting guaiacol into hydrocarbons (cyclohexane and benzene). A comparison of the catalyst supports revealed the ordered mesoporous silica, SBA-15 and KIT-6, with high surface area, to have a higher hydrocarbon yield than conventional silica. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Catalytic upgrading of lignin derived bio-oil model compound using mesoporous solid catalysts

Loading next page...
 
/lp/springer_journal/catalytic-upgrading-of-lignin-derived-bio-oil-model-compound-using-fd1DjYBWqj
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2223-y
Publisher site
See Article on Publisher Site

Abstract

The catalytic upgrading of a lignin-derived bio-oil model compound, the hydrodeoxygenation of guaiacol, was performed using mesoporous solid catalysts. Platinum supported on silica and mesoporous silica (SBA-15 and KIT-6) were used as catalysts. The level of platinum incorporation and aluminum grafting did not alter the physical properties of the supports, such as surface area and pore size distribution. On the other hand, these treatments drastically affected the catalytic activities. A catalyst with platinum alone converted guaiacol to oxygenate compounds. In contrast, a series of catalysts with both platinum incorporation and aluminum grafting enhanced hydrodeoxygenation by converting guaiacol into hydrocarbons (cyclohexane and benzene). A comparison of the catalyst supports revealed the ordered mesoporous silica, SBA-15 and KIT-6, with high surface area, to have a higher hydrocarbon yield than conventional silica.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 2, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off