Catalytic dehydration of ethanol into ethylene in a tubular reactor of the pilot installation on alumina catalysts with varied grain size

Catalytic dehydration of ethanol into ethylene in a tubular reactor of the pilot installation on... Synthesis of ethylene on trefoil and cylindrical experimental acid-modified aluminum oxide samples was studied under an ethanol (94%) gas load of 920–2200 h–1 and heat-carrier temperature of 400–440°C. In the conditions of a 98% ethanol conversion, the higher activity of the trefoil made it possible to reduce the height of the bed and its hydraulic resistance and, accordingly, raise the specific catalyst throughput for ethylene. Compared with industrial aluminum oxide, the throughput of 1 g of the catalyst for ethylene on experimental samples is higher by 2.5–6.5 kg yr–1, and the specific expenditure of ethanol is lower by 0.22–0.23 kg kg–1. The endothermic process in a tubular reactor is characterized by a high parametric sensitivity of the average integral temperature along the catalyst bed, with the average temperature being higher on the less active catalyst. Thus, the higher average temperature can compensate for the lower activity of the catalyst without additional increase in the contact duration and(or) heat-carrier temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Catalytic dehydration of ethanol into ethylene in a tubular reactor of the pilot installation on alumina catalysts with varied grain size

Loading next page...
 
/lp/springer_journal/catalytic-dehydration-of-ethanol-into-ethylene-in-a-tubular-reactor-of-ocDnrzXm08
Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427217020021
Publisher site
See Article on Publisher Site

Abstract

Synthesis of ethylene on trefoil and cylindrical experimental acid-modified aluminum oxide samples was studied under an ethanol (94%) gas load of 920–2200 h–1 and heat-carrier temperature of 400–440°C. In the conditions of a 98% ethanol conversion, the higher activity of the trefoil made it possible to reduce the height of the bed and its hydraulic resistance and, accordingly, raise the specific catalyst throughput for ethylene. Compared with industrial aluminum oxide, the throughput of 1 g of the catalyst for ethylene on experimental samples is higher by 2.5–6.5 kg yr–1, and the specific expenditure of ethanol is lower by 0.22–0.23 kg kg–1. The endothermic process in a tubular reactor is characterized by a high parametric sensitivity of the average integral temperature along the catalyst bed, with the average temperature being higher on the less active catalyst. Thus, the higher average temperature can compensate for the lower activity of the catalyst without additional increase in the contact duration and(or) heat-carrier temperature.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Jun 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off