Catalytic carbonylation for the synthesis of chemical intermediates

Catalytic carbonylation for the synthesis of chemical intermediates Chemistry related to three catalytic carbonylation reactions is discussed. Synthesis of diphenylurea from nitrobenzene, aniline, and CO gives isolated yields above 98% at 100–120 °C and 15–60 bar of CO in the presence of a palladium (II) complex, PPh3 and NEt4Cl. Experimental evidence was provided to prove a new reaction stoichiometry and involvement of a carbamoyl intermediate. In carbonylation of HCHO over ion exchange resin catalysts, reaction temperature, time, pressure, and solvent were important variables to obtain high yields of methyl glycolate. Carbonylation of isobutylphenylethanol at 120°C and 40 bar of CO in the presence of PdCl2−PPh3−HCl gives 98% yield of α-(4-isobutylphenyl) propionic acid (ibuprofen). Each catalyst component had a definite role that is indispensable for an efficient overall reaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Catalytic carbonylation for the synthesis of chemical intermediates

Loading next page...
 
/lp/springer_journal/catalytic-carbonylation-for-the-synthesis-of-chemical-intermediates-xGR6lsaSgh
Publisher
Springer Netherlands
Copyright
Copyright © 1998 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856798X00771
Publisher site
See Article on Publisher Site

Abstract

Chemistry related to three catalytic carbonylation reactions is discussed. Synthesis of diphenylurea from nitrobenzene, aniline, and CO gives isolated yields above 98% at 100–120 °C and 15–60 bar of CO in the presence of a palladium (II) complex, PPh3 and NEt4Cl. Experimental evidence was provided to prove a new reaction stoichiometry and involvement of a carbamoyl intermediate. In carbonylation of HCHO over ion exchange resin catalysts, reaction temperature, time, pressure, and solvent were important variables to obtain high yields of methyl glycolate. Carbonylation of isobutylphenylethanol at 120°C and 40 bar of CO in the presence of PdCl2−PPh3−HCl gives 98% yield of α-(4-isobutylphenyl) propionic acid (ibuprofen). Each catalyst component had a definite role that is indispensable for an efficient overall reaction.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 14, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off