Catalytic behavior of melamine glyoxal resin towards consecutive oxidation and oxy-Michael addition

Catalytic behavior of melamine glyoxal resin towards consecutive oxidation and oxy-Michael addition Synthesis of melamine glyoxal resin involves a catalyst-free, one pot reaction between melamine and glyoxal in DMF. The synthesized resins have a similar morphological arrangement to that of layered materials as depicted by their XRD pattern and Raman spectra. The catalytic behavior of melamine glyoxal resin (MGR) have been studied in allylic oxidation of cyclohexene and simultaneous Michael addition. The MGR/solvent/O2 oxidant system can be regarded as a metal-free, additive-free, cost-effective and environmentally benign catalytic system. The oxidative behavior of MGR is attributed to its ability to generate in situ organic peroxide species during the course of reaction. Generation of peroxide species is confirmed by the KI/starch test and further confirmed by the complete suppression effect of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) over oxidation. The activity for Michael addition can be attributed to the presence of a higher content of nitrogen atoms, which serves as the active site. In oxidation, 28.1% conversion of cyclohexene with 37.19 and 62.81% selectivities for cyclohexenol and cyclohexenone were observed, respectively. In consecutive oxidation and oxy-Michael addition, 31.5% conversion of cyclohexene was observed with selectivities of 61.6% for cyclohexenone and 38.4% for alkoxy product. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Catalytic behavior of melamine glyoxal resin towards consecutive oxidation and oxy-Michael addition

Loading next page...
 
/lp/springer_journal/catalytic-behavior-of-melamine-glyoxal-resin-towards-consecutive-LegpMxO9yc
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0169-7
Publisher site
See Article on Publisher Site

Abstract

Synthesis of melamine glyoxal resin involves a catalyst-free, one pot reaction between melamine and glyoxal in DMF. The synthesized resins have a similar morphological arrangement to that of layered materials as depicted by their XRD pattern and Raman spectra. The catalytic behavior of melamine glyoxal resin (MGR) have been studied in allylic oxidation of cyclohexene and simultaneous Michael addition. The MGR/solvent/O2 oxidant system can be regarded as a metal-free, additive-free, cost-effective and environmentally benign catalytic system. The oxidative behavior of MGR is attributed to its ability to generate in situ organic peroxide species during the course of reaction. Generation of peroxide species is confirmed by the KI/starch test and further confirmed by the complete suppression effect of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) over oxidation. The activity for Michael addition can be attributed to the presence of a higher content of nitrogen atoms, which serves as the active site. In oxidation, 28.1% conversion of cyclohexene with 37.19 and 62.81% selectivities for cyclohexenol and cyclohexenone were observed, respectively. In consecutive oxidation and oxy-Michael addition, 31.5% conversion of cyclohexene was observed with selectivities of 61.6% for cyclohexenone and 38.4% for alkoxy product.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 16, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off