Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat

Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat A burst of evolutionary duplication upon land colonization seems to have led to the large superfamily of cytochromes P450 in higher plants. Within this superfamily some clans and families are heavily duplicated. Others, such as genes involved in the phenylpropanoid pathway have led to fewer duplication events. Eight coding sequences belonging to the CYP98 family reported to catalyze the 3-hydroxylation step in this pathway were isolated from Triticum aestivum (wheat) and expressed in yeast. Comparison of the catalytic properties of the recombinant enzymes with those of CYP98s from other plant taxa was coupled to phylogenetic analyses. Our results indicate that the unusually high frequency of gene duplication in the wheat CYP98 family is a direct or indirect result from ploidization. While ancient duplication led to evolution of enzymes with different substrate preferences, most of recent duplicates underwent silencing via degenerative mutations. Three of the eight tested CYP98s from wheat have phenol meta-hydroxylase activity, with p-coumaroylshikimate being the primary substrate for all of these, as it is the case for CYP98s from sweet basil and Arabidopsis thaliana. However, CYP98s from divergent taxa have acquired different additional subsidiary activities. Some of them might be significant in the metabolism of various free or conjugated phenolics in different plant species. One of the most significant is meta-hydroxylation of p-coumaroyltyramine, predominantly by the wheat enzymes, for the synthesis of suberin phenolic monomers. Homology modeling, confirmed by directed mutagenesis, provides information on the protein regions and structural features important for some observed changes in substrate selectivity. They indicate that the metabolism of quinate ester and tyramine amide of p-coumaric acid rely on the same recognition site in the protein. Plant Molecular Biology Springer Journals

Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat

Loading next page...
Kluwer Academic Publishers
Copyright © 2006 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial