Catalysis of redox reactions by Ag@TiO2 and Fe3+-doped Ag@TiO2 core–shell type nanoparticles

Catalysis of redox reactions by Ag@TiO2 and Fe3+-doped Ag@TiO2 core–shell type nanoparticles Ag nanoparticles encapsulated by TiO2 shells have the ability to catalyze redox reactions on their surface. By continually monitoring by use of UV–visible spectroscopy it was found that the surface charge of both TiO2-coated and uncoated colloidal silver particles changed after chemical electron injection. The charging and discharging process of Ag@TiO2 vary, depending on the different Ag content of the core–shell nanoparticles. In order to enhance the stability of Ag@TiO2 colloids, Fe3+ was doped into the lattice of the TiO2 shells. The experimental results showed that the Fe3+ ions have the capacity to store and transfer electrons. Furthermore, the charging and discharging rate can be controlled by changing the thickness of the TiO2 shells, because they are limited by the diffusion distance of electrons through the TiO2 shells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Catalysis of redox reactions by Ag@TiO2 and Fe3+-doped Ag@TiO2 core–shell type nanoparticles

Loading next page...
 
/lp/springer_journal/catalysis-of-redox-reactions-by-ag-tio2-and-fe3-doped-ag-tio2-core-JzKgdEQuc3
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0130-9
Publisher site
See Article on Publisher Site

Abstract

Ag nanoparticles encapsulated by TiO2 shells have the ability to catalyze redox reactions on their surface. By continually monitoring by use of UV–visible spectroscopy it was found that the surface charge of both TiO2-coated and uncoated colloidal silver particles changed after chemical electron injection. The charging and discharging process of Ag@TiO2 vary, depending on the different Ag content of the core–shell nanoparticles. In order to enhance the stability of Ag@TiO2 colloids, Fe3+ was doped into the lattice of the TiO2 shells. The experimental results showed that the Fe3+ ions have the capacity to store and transfer electrons. Furthermore, the charging and discharging rate can be controlled by changing the thickness of the TiO2 shells, because they are limited by the diffusion distance of electrons through the TiO2 shells.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 10, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off