Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families

Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and... The orchid Erycina pusilla has a short life cycle and relatively low chromosome number, making it a potential model plant for orchid functional genomics. To that end, small RNAs (sRNAs) from different developmental stages of different organs were sequenced. In this miRNA mix, 33 annotated miRNA families and 110 putative miRNA-targeted transcripts were identified in E. pusilla. Fifteen E. pusilla miRNA target genes were found to be similar to those in other species. There were putative novel miRNAs identified by 3 different strategies. The genomic sequences of the four miRNAs that were identified using rice genome as the reference can form the stem loop structure. The t0000354 miRNA, identified using rice genome sequences and a Phalaenopsis study, had a high read count. The target gene of this miRNA is MADS (unigene30603), which belongs to the AP3-PI subfamily. The most abundant miRNA was E. pusilla miR156 (epu-miR156), orthologs of which work to maintain the vegetative phase by repressing the expression of the SQUAMOSA promoter-binding-like (SPL) transcription factors. Fifteen genes in the E. pusilla SPL (EpSPL) family were identified, nine of which contained the putative epu-miR156 target site. Target genes of epu-miR172, also a key regulator of developmental changes in the APETALA2 (EpAP2) family, were identified. Experiments using 5′RLM-RACE demonstrated that the genes EpSPL1, 2, 3, 4, 7, 9, 10, 14 and EpAP2-9, -10, -11 were regulated by epu-miR156 and epu-miR172, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families

Loading next page...
 
/lp/springer_journal/catalog-of-erycina-pusilla-mirna-and-categorization-of-reproductive-4yua75NsHB
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0055-y
Publisher site
See Article on Publisher Site

Abstract

The orchid Erycina pusilla has a short life cycle and relatively low chromosome number, making it a potential model plant for orchid functional genomics. To that end, small RNAs (sRNAs) from different developmental stages of different organs were sequenced. In this miRNA mix, 33 annotated miRNA families and 110 putative miRNA-targeted transcripts were identified in E. pusilla. Fifteen E. pusilla miRNA target genes were found to be similar to those in other species. There were putative novel miRNAs identified by 3 different strategies. The genomic sequences of the four miRNAs that were identified using rice genome as the reference can form the stem loop structure. The t0000354 miRNA, identified using rice genome sequences and a Phalaenopsis study, had a high read count. The target gene of this miRNA is MADS (unigene30603), which belongs to the AP3-PI subfamily. The most abundant miRNA was E. pusilla miR156 (epu-miR156), orthologs of which work to maintain the vegetative phase by repressing the expression of the SQUAMOSA promoter-binding-like (SPL) transcription factors. Fifteen genes in the E. pusilla SPL (EpSPL) family were identified, nine of which contained the putative epu-miR156 target site. Target genes of epu-miR172, also a key regulator of developmental changes in the APETALA2 (EpAP2) family, were identified. Experiments using 5′RLM-RACE demonstrated that the genes EpSPL1, 2, 3, 4, 7, 9, 10, 14 and EpAP2-9, -10, -11 were regulated by epu-miR156 and epu-miR172, respectively.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 11, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off