Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice

Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and... Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Phytohormones such as abscisic acid (ABA) and indole-3-acetic acid (IAA) play critical roles in developmental progresses and environmental responses through complex signalling networks. However, crosstalk between the two hormones at the biosynthesis level remains largely unknown. Here, we report that carotenoid-deficient mutants (phs1, phs2, phs3-1, phs4, and PDS-RNAi transgenic rice) were impaired in the biosynthesis of ABA and IAA. Under drought conditions, phs3-1 and PDS-RNAi transgenic rice showed larger stomata aperture and earlier wilting compared to the wild type at both seedling and panicle developmental stage. Interestingly, these carotenoid-deficient lines showed increased cold resistance, which was likely due to the combined effects of reduced IAA content, alleviated oxidative damage and decreased membrane penetrability. Furthermore, we found that IAA content was significantly declined in rice treated with fluridone (a carotenoid and ABA biosynthesis inhibitor), and expression of auxin synthesis and metabolism-related genes were altered in the fluridone-treated rice similar to that in the carotenoid-deficient mutants. In addition, exogenous IAA, but not ABA, could restore the dwarf phenotype of phs3-1 and PDS-RNAi transgenic rice. These results support a crosstalk between ABA and IAA at the biosynthesis level, and this crosstalk is involved in development and differentially affects drought and cold tolerance in rice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice

Loading next page...
 
/lp/springer_journal/carotenoid-deficiency-impairs-aba-and-iaa-biosynthesis-and-urEKnmnrPp
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0103-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial