Cardiac Sarcalumenin: Phosphorylation, Comparison with the Skeletal Muscle Sarcalumenin and Modulation of Ryanodine Receptor

Cardiac Sarcalumenin: Phosphorylation, Comparison with the Skeletal Muscle Sarcalumenin and... Cardiac sarcoplasmic reticulum (SR) contains an endogenous phosphorylation system that under specific conditions phosphorylates two proteins with apparent molecular masses of 150 and 130 kDa. The conditions for their phosphorylation are as for the skeletal muscle sarcalumenin and the histidine-rich Ca2+ binding protein (HCP) with respect to: (i) Ca2+ and high concentrations of NaF are required; (ii) phosphorylation is obtained with no added Mg2+ and shows a similar time course and ATP concentration dependence; (iii) inhibition by similar concentrations of La3+; (iv) phosphorylation is obtained with [γ-32P]GTP; (v) ryanodine binding is inhibited parallel to the phosphorylation of the two proteins. The endogenous kinase is identified as casein kinase II (CK II) based on its ability to use GTP as effectively as ATP, and its inhibition by La3+. The association of CK II with the cardiac SR, even after EGTA extraction at alkaline pH, is demonstrated using antibodies against CK II. The cardiac 130 kDa protein is identified as sarcalumenin based on its partial amino acid sequence and its blue staining with Stains-All. Cardiac sarcalumenin is different from the skeletal muscle protein based on electrophoretic mobilities, immunological analysis, peptide and phosphopeptide maps, as well as amino acid sequencing. Preincubation of SR with NaF and ATP, but not with NaF and AMP-PNP caused strong inhibition of ryanodine binding. This is due to decrease in Ca2+- and ryanodine-binding affinities of the ryanodine receptor (RyR) by about 6.6 and 18-fold, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Cardiac Sarcalumenin: Phosphorylation, Comparison with the Skeletal Muscle Sarcalumenin and Modulation of Ryanodine Receptor

Loading next page...
 
/lp/springer_journal/cardiac-sarcalumenin-phosphorylation-comparison-with-the-skeletal-yrySMpS6Lp
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900536
Publisher site
See Article on Publisher Site

Abstract

Cardiac sarcoplasmic reticulum (SR) contains an endogenous phosphorylation system that under specific conditions phosphorylates two proteins with apparent molecular masses of 150 and 130 kDa. The conditions for their phosphorylation are as for the skeletal muscle sarcalumenin and the histidine-rich Ca2+ binding protein (HCP) with respect to: (i) Ca2+ and high concentrations of NaF are required; (ii) phosphorylation is obtained with no added Mg2+ and shows a similar time course and ATP concentration dependence; (iii) inhibition by similar concentrations of La3+; (iv) phosphorylation is obtained with [γ-32P]GTP; (v) ryanodine binding is inhibited parallel to the phosphorylation of the two proteins. The endogenous kinase is identified as casein kinase II (CK II) based on its ability to use GTP as effectively as ATP, and its inhibition by La3+. The association of CK II with the cardiac SR, even after EGTA extraction at alkaline pH, is demonstrated using antibodies against CK II. The cardiac 130 kDa protein is identified as sarcalumenin based on its partial amino acid sequence and its blue staining with Stains-All. Cardiac sarcalumenin is different from the skeletal muscle protein based on electrophoretic mobilities, immunological analysis, peptide and phosphopeptide maps, as well as amino acid sequencing. Preincubation of SR with NaF and ATP, but not with NaF and AMP-PNP caused strong inhibition of ryanodine binding. This is due to decrease in Ca2+- and ryanodine-binding affinities of the ryanodine receptor (RyR) by about 6.6 and 18-fold, respectively.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off