Carbonate drowning successions of the Bird’s Head, Indonesia

Carbonate drowning successions of the Bird’s Head, Indonesia Drowning unconformities and their related strata are important records of key tectonic and environmental events throughout Earth’s history. In the eastern Bird’s Head region of West Papua, Indonesia, Middle Miocene strata record a drowning unconformity present over much of western New Guinea, including several offshore basins. This study records platform carbonate strata overlain by mixed shallow- and deep-water units containing benthic and planktonic foraminiferal assemblages in several outcrop locations across the eastern Bird’s Head region. These heterolithic beds are interpreted as drowning successions that are terminated by a drowning unconformity. We define a succession exposed along the Anggrisi River in the eastern Bird’s Head as a stratotype for carbonate platform drowning in the Bird’s Head, analogous to similar faunal turnovers identified in its offshore basins. Detailed facies analyses, biostratigraphic dating, and paleoenvironmental interpretations using larger benthic and planktonic foraminifera collected from the Anggrisi River succession help to constrain the drowning event recorded onshore as beginning in the Burdigalian and ending in the Serravallian. The cause of platform drowning in the Bird’s Head is attributed to a reduction in the rates of carbonate accumulation due to the presence of excess nutrients in the depositional environment. Already foundering carbonate platforms due to environmental deterioration were left vulnerable to submergence and eventually succumbed to drowning. Low rates of carbonate production were outpaced by the rate of relative sea-level rise caused by high-amplitude oscillations in global glacio-eustatic sea-level change and/or regional tectonic subsidence. The duration of the drowning event across the entire Bird’s Head region is interpreted to have lasted a duration of approximately 9.5 My, between 18.0 and 8.58 Ma. This has implications when interpreting timings of sedimentary basin fill across western New Guinea and in other basins where carbonate platform drowning is recorded. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Facies Springer Journals

Carbonate drowning successions of the Bird’s Head, Indonesia

Loading next page...
 
/lp/springer_journal/carbonate-drowning-successions-of-the-bird-s-head-indonesia-9CQOU0Necx
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Earth Sciences; Sedimentology; Biogeosciences; Geochemistry; Paleontology; Ecology
ISSN
0172-9179
eISSN
1612-4820
D.O.I.
10.1007/s10347-017-0506-z
Publisher site
See Article on Publisher Site

Abstract

Drowning unconformities and their related strata are important records of key tectonic and environmental events throughout Earth’s history. In the eastern Bird’s Head region of West Papua, Indonesia, Middle Miocene strata record a drowning unconformity present over much of western New Guinea, including several offshore basins. This study records platform carbonate strata overlain by mixed shallow- and deep-water units containing benthic and planktonic foraminiferal assemblages in several outcrop locations across the eastern Bird’s Head region. These heterolithic beds are interpreted as drowning successions that are terminated by a drowning unconformity. We define a succession exposed along the Anggrisi River in the eastern Bird’s Head as a stratotype for carbonate platform drowning in the Bird’s Head, analogous to similar faunal turnovers identified in its offshore basins. Detailed facies analyses, biostratigraphic dating, and paleoenvironmental interpretations using larger benthic and planktonic foraminifera collected from the Anggrisi River succession help to constrain the drowning event recorded onshore as beginning in the Burdigalian and ending in the Serravallian. The cause of platform drowning in the Bird’s Head is attributed to a reduction in the rates of carbonate accumulation due to the presence of excess nutrients in the depositional environment. Already foundering carbonate platforms due to environmental deterioration were left vulnerable to submergence and eventually succumbed to drowning. Low rates of carbonate production were outpaced by the rate of relative sea-level rise caused by high-amplitude oscillations in global glacio-eustatic sea-level change and/or regional tectonic subsidence. The duration of the drowning event across the entire Bird’s Head region is interpreted to have lasted a duration of approximately 9.5 My, between 18.0 and 8.58 Ma. This has implications when interpreting timings of sedimentary basin fill across western New Guinea and in other basins where carbonate platform drowning is recorded.

Journal

FaciesSpringer Journals

Published: Jul 31, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off