Carbon nanotubes, graphene, and their derivatives for heavy metal removal

Carbon nanotubes, graphene, and their derivatives for heavy metal removal Carbon nanoadsorbents have attracted tremendous interest for metal ion removal from wastewater due to their extraordinary aspect ratios, surface areas, porosities, and reactivities. However, challenges still exist as they suffer from subpar dispersion and recovery, tending to aggregate, and so on. Thus, significant research efforts focus on modification of these carbon nanomaterials to increase the dispersions and recoveries, while maintaining or even enhancing the desirable properties. This review aims to give an in-depth look at recent and impactful advances in metal ion adsorption applications involving these modified carbon nanostructures. Here, the advanced design and testing of modified carbon nanostructures for metal ion removal are emphasized with comprehensive examples, and various adsorption behaviors and mechanisms are discussed, which are hoped to help the development of more effective adsorbents for water treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Composites and Hybrid Materials Springer Journals
Loading next page...
 
/lp/springer_journal/carbon-nanotubes-graphene-and-their-derivatives-for-heavy-metal-8qOrfqkTd2
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Materials Science; Ceramics, Glass, Composites, Natural Materials; Materials Engineering; Polymer Sciences
ISSN
2522-0128
eISSN
2522-0136
D.O.I.
10.1007/s42114-017-0004-3
Publisher site
See Article on Publisher Site

Abstract

Carbon nanoadsorbents have attracted tremendous interest for metal ion removal from wastewater due to their extraordinary aspect ratios, surface areas, porosities, and reactivities. However, challenges still exist as they suffer from subpar dispersion and recovery, tending to aggregate, and so on. Thus, significant research efforts focus on modification of these carbon nanomaterials to increase the dispersions and recoveries, while maintaining or even enhancing the desirable properties. This review aims to give an in-depth look at recent and impactful advances in metal ion adsorption applications involving these modified carbon nanostructures. Here, the advanced design and testing of modified carbon nanostructures for metal ion removal are emphasized with comprehensive examples, and various adsorption behaviors and mechanisms are discussed, which are hoped to help the development of more effective adsorbents for water treatment.

Journal

Advanced Composites and Hybrid MaterialsSpringer Journals

Published: Sep 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off