Carbon Nanotube Reinforced Collagen/Hydroxyapatite Scaffolds Improve Bone Tissue Formation In Vitro and In Vivo

Carbon Nanotube Reinforced Collagen/Hydroxyapatite Scaffolds Improve Bone Tissue Formation In... Current bone regeneration strategies faced major challenges in fabricating the bionic scaffolds with nano-structure, constituents and mechanical features of native bone. In this study, we developed a new porous scaffold by adding the multi-walled carbon nanotube (MWCNT) into collagen (Col)/hydroxyapatite (HA) composites. Data showed that 0.5%CNT/Col/HA (0.5%CNT) group was approximately tenfolds stiffer than Col–HA, and it was superior in promoting bone marrow mesenchymal stem proliferation and spreading, mRNA and protein expressions of bone sialoprotein (BSP) and osteocalcin (OCN) than Col–HA group. Moreover, we utilized 0.5%CNT composite to repair the rat calvarial defects (8 mm diameter) in vivo, and observed the new bone formation by 3D reconstruction of micro CT, HE and Masson staining, and BSP, OCN by immunohistochemical analysis. Results showed that newly formed bone in 0.5%CNT group was significantly higher than that in Col–HA group at 12 weeks. These findings highlighted a promising strategy in healing of large area bone defect with MWCNT added into the Col–HA scaffold as they possessed the combined effects of mechanical strength and osteogenicity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Biomedical Engineering Springer Journals

Carbon Nanotube Reinforced Collagen/Hydroxyapatite Scaffolds Improve Bone Tissue Formation In Vitro and In Vivo

Loading next page...
 
/lp/springer_journal/carbon-nanotube-reinforced-collagen-hydroxyapatite-scaffolds-improve-JWocxdOfkp
Publisher
Springer US
Copyright
Copyright © 2017 by Biomedical Engineering Society
Subject
Biomedicine; Biomedicine, general; Biomedical Engineering; Biological and Medical Physics, Biophysics; Classical Mechanics; Biochemistry, general
ISSN
0090-6964
eISSN
1573-9686
D.O.I.
10.1007/s10439-017-1866-9
Publisher site
See Article on Publisher Site

Abstract

Current bone regeneration strategies faced major challenges in fabricating the bionic scaffolds with nano-structure, constituents and mechanical features of native bone. In this study, we developed a new porous scaffold by adding the multi-walled carbon nanotube (MWCNT) into collagen (Col)/hydroxyapatite (HA) composites. Data showed that 0.5%CNT/Col/HA (0.5%CNT) group was approximately tenfolds stiffer than Col–HA, and it was superior in promoting bone marrow mesenchymal stem proliferation and spreading, mRNA and protein expressions of bone sialoprotein (BSP) and osteocalcin (OCN) than Col–HA group. Moreover, we utilized 0.5%CNT composite to repair the rat calvarial defects (8 mm diameter) in vivo, and observed the new bone formation by 3D reconstruction of micro CT, HE and Masson staining, and BSP, OCN by immunohistochemical analysis. Results showed that newly formed bone in 0.5%CNT group was significantly higher than that in Col–HA group at 12 weeks. These findings highlighted a promising strategy in healing of large area bone defect with MWCNT added into the Col–HA scaffold as they possessed the combined effects of mechanical strength and osteogenicity.

Journal

Annals of Biomedical EngineeringSpringer Journals

Published: Jun 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off