Carbon nanotube-based extraction and electrochemical detection of heavy metals

Carbon nanotube-based extraction and electrochemical detection of heavy metals In this mini review, recent trends and challenges in developing carbon nanotube-based extraction and electrochemical detection of heavy metals in water are reviewed. Carbon nanotubes (CNT) have electrical, mechanical, chemical, and structural properties superior to those of conventional materials, for example graphite and activated carbon. CNT-based procedures are also more efficient than traditional techniques and methods, for example liquid–liquid extraction, atomic-absorption spectroscopy, flame photometry, and inductively coupled plasma, because they can enable rapid, sensitive, simple, and low-cost on-site detection. Different forms of CNT, including as-grown, oxidised, and functionalised CNT, can be well suited to metal adsorption. The measurement procedure relies on adsorbing the metal on the CNT surface after reasonable contact time, either by applying an electrical potential or under open-circuit conditions, and subsequent quantification. Different types of CNT-based electrode, including composite, paste, and binder-free, can be fabricated and used for metal detection. Application of CNT and their novel properties to the adsorption and detection of heavy metals is discussed in detail. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Carbon nanotube-based extraction and electrochemical detection of heavy metals

Loading next page...
 
/lp/springer_journal/carbon-nanotube-based-extraction-and-electrochemical-detection-of-El7kDcPfwK
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0307-x
Publisher site
See Article on Publisher Site

Abstract

In this mini review, recent trends and challenges in developing carbon nanotube-based extraction and electrochemical detection of heavy metals in water are reviewed. Carbon nanotubes (CNT) have electrical, mechanical, chemical, and structural properties superior to those of conventional materials, for example graphite and activated carbon. CNT-based procedures are also more efficient than traditional techniques and methods, for example liquid–liquid extraction, atomic-absorption spectroscopy, flame photometry, and inductively coupled plasma, because they can enable rapid, sensitive, simple, and low-cost on-site detection. Different forms of CNT, including as-grown, oxidised, and functionalised CNT, can be well suited to metal adsorption. The measurement procedure relies on adsorbing the metal on the CNT surface after reasonable contact time, either by applying an electrical potential or under open-circuit conditions, and subsequent quantification. Different types of CNT-based electrode, including composite, paste, and binder-free, can be fabricated and used for metal detection. Application of CNT and their novel properties to the adsorption and detection of heavy metals is discussed in detail.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 9, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off