Carbon cycle in spruce ecosystems of the northern Taiga subzone

Carbon cycle in spruce ecosystems of the northern Taiga subzone The main components of the carbon balance have been determined in old spruce-bilberry forests of the northern taiga subzone. Annual carbon deposition in live phytomass and necromass has been determined by the weight method. Photosynthetic carbon binding has been calculated using the chlorophyll index, and the daily carbon balance has been estimated on the basis of direct measurements of CO2 exchange. The results have shown that photosynthetic carbon binding by the phytocenosis amounts to 3.5–4 t/ha per year. Taking into consideration the litter yearly deposition decreased up to 1 t C/ha per year. With more than 70% of carbon accumulated in the organic mass being oxidized within the phytocenosis and returned to the atmosphere in the form of CO2. Spruce ecosystems serve as a sink for 0.2–0.3 t C/ha per year. Russian Journal of Ecology Springer Journals

Carbon cycle in spruce ecosystems of the northern Taiga subzone

Loading next page...
Copyright © 2006 by Pleiades Publishing, Inc.
Life Sciences; Environment, general; Ecology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial