Carbodiimide cross-linking counteracts the detrimental effects of gamma irradiation on the physical properties of collagen-hyaluronan sponges

Carbodiimide cross-linking counteracts the detrimental effects of gamma irradiation on the... Collagen-based scaffolds are extensively used in biomaterials and tissue engineering applications. These scaffolds have shown great biocompatibility and versatility, but their relatively low mechanical properties may limit use in orthopaedic load-bearing applications. Moreover, terminal sterilization with gamma irradiation, as is commonly performed with commercial devices, presents concerns over structural integrity and enzymatic stability. Therefore, the goal of this study was to test the hypothesis that EDC/NHS cross-linking (10 mM/5 mM) can protect collagen-hyaluronan sponges from the damaging effects of gamma irradiation. Specifically, we evaluated compressive and tensile mechanical properties, enzymatic stability, porosity and pore size, and swelling ratio. Ultimate tensile strength and elastic modulus exhibited increases (168.5 and 245.8%, respectively) following irradiation, and exhibited over tenfold increases (1049.2 and 1270.6%, respectively) following cross-linking. Irradiation affected pore size (38.4% decrease), but cross-linking prior to irradiation resulted in only a 17.8% decrease. Cross-linking also showed an offsetting effect on the equilibrium modulus, enzymatic stability, and swelling ratio of sponges. These results suggest that carbodiimide cross-linking of collagen-hyaluronan sponges can mitigate the structural damage typically experienced during gamma irradiation, warranting their use in tissue engineering applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Medicine Springer Journals

Carbodiimide cross-linking counteracts the detrimental effects of gamma irradiation on the physical properties of collagen-hyaluronan sponges

Loading next page...
 
/lp/springer_journal/carbodiimide-cross-linking-counteracts-the-detrimental-effects-of-996Gm4DSCC
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Biomaterials; Biomedical Engineering; Regenerative Medicine/Tissue Engineering; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials; Surfaces and Interfaces, Thin Films
ISSN
0957-4530
eISSN
1573-4838
D.O.I.
10.1007/s10856-018-6056-2
Publisher site
See Article on Publisher Site

Abstract

Collagen-based scaffolds are extensively used in biomaterials and tissue engineering applications. These scaffolds have shown great biocompatibility and versatility, but their relatively low mechanical properties may limit use in orthopaedic load-bearing applications. Moreover, terminal sterilization with gamma irradiation, as is commonly performed with commercial devices, presents concerns over structural integrity and enzymatic stability. Therefore, the goal of this study was to test the hypothesis that EDC/NHS cross-linking (10 mM/5 mM) can protect collagen-hyaluronan sponges from the damaging effects of gamma irradiation. Specifically, we evaluated compressive and tensile mechanical properties, enzymatic stability, porosity and pore size, and swelling ratio. Ultimate tensile strength and elastic modulus exhibited increases (168.5 and 245.8%, respectively) following irradiation, and exhibited over tenfold increases (1049.2 and 1270.6%, respectively) following cross-linking. Irradiation affected pore size (38.4% decrease), but cross-linking prior to irradiation resulted in only a 17.8% decrease. Cross-linking also showed an offsetting effect on the equilibrium modulus, enzymatic stability, and swelling ratio of sponges. These results suggest that carbodiimide cross-linking of collagen-hyaluronan sponges can mitigate the structural damage typically experienced during gamma irradiation, warranting their use in tissue engineering applications.

Journal

Journal of Materials Science: Materials in MedicineSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off