Canopy reflectance, thermal stress, and apparent soil electrical conductivity as predictors of within-field variability in grain yield and grain protein of malting barley

Canopy reflectance, thermal stress, and apparent soil electrical conductivity as predictors of... Three consecutive crops of malting barley grown during 2002–2004 on clay-loam on a Swedish farm (59°74’ N, 17°00’ E) were monitored for canopy reflectance at growth stages GS32 (second node detectable) and GS69 (anthesis complete), and the crops were sampled for above ground dry matter and nitrogen content. GPS-positioned unfertilised plots were established and used for soil sampling. At harvest, plots of 0.25 m2 were cut in both fertilised and unfertilised plots, and 24 m2 areas were also harvested from fertilised barley. The correlations between nine different vegetation indices (VIs) from each growth stage and yield and grain protein were tested. All indices were significantly correlated (at 5% level) with grain yield (GY), and protein when sampled at GS69 but only four when sampled at GS32. Three variables (the best-correlated vegetation index sampled at GS32; an index for accumulated elevated daily maximum temperatures for the grain filling period, and normalised apparent electrical conductivity (ECa) of the soil) were sufficient input in the final regressions. Using these three variables, it was possible to make either one multivariate (PLS) regression model or two linear multiple regression models for grain yield (GY) and grain protein, with correlation coefficients of 0.90 and 0.73 for yield and protein, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Canopy reflectance, thermal stress, and apparent soil electrical conductivity as predictors of within-field variability in grain yield and grain protein of malting barley

Loading next page...
 
/lp/springer_journal/canopy-reflectance-thermal-stress-and-apparent-soil-electrical-iV8fxNV8W7
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-006-9019-4
Publisher site
See Article on Publisher Site

Abstract

Three consecutive crops of malting barley grown during 2002–2004 on clay-loam on a Swedish farm (59°74’ N, 17°00’ E) were monitored for canopy reflectance at growth stages GS32 (second node detectable) and GS69 (anthesis complete), and the crops were sampled for above ground dry matter and nitrogen content. GPS-positioned unfertilised plots were established and used for soil sampling. At harvest, plots of 0.25 m2 were cut in both fertilised and unfertilised plots, and 24 m2 areas were also harvested from fertilised barley. The correlations between nine different vegetation indices (VIs) from each growth stage and yield and grain protein were tested. All indices were significantly correlated (at 5% level) with grain yield (GY), and protein when sampled at GS69 but only four when sampled at GS32. Three variables (the best-correlated vegetation index sampled at GS32; an index for accumulated elevated daily maximum temperatures for the grain filling period, and normalised apparent electrical conductivity (ECa) of the soil) were sufficient input in the final regressions. Using these three variables, it was possible to make either one multivariate (PLS) regression model or two linear multiple regression models for grain yield (GY) and grain protein, with correlation coefficients of 0.90 and 0.73 for yield and protein, respectively.

Journal

Precision AgricultureSpringer Journals

Published: Aug 18, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off