Canopy and leaf photosynthetic characteristics and water use efficiency of sweet sorghum under drought stress

Canopy and leaf photosynthetic characteristics and water use efficiency of sweet sorghum under... The objective of this paper was to examine the relationship between Water Use Efficiency (WUE) at the canopy and leaf levels, to determine soil moisture conditions, which can optimize yield, and WUE of sweet sorghum (Sorghum bicolor (Linn.) Moench), thus providing some theoretical foundation for using marginal land effectively and developing production of sweet sorghum. Three levels of soil moisture conditions were established, and photosynthetic characteristics and yield were measured. The canopy apparent photo-synthetic rate (CAP) and leaf photosynthetic rate (P N) were reduced gradually with increased drought stress, and the CAP was lower than the P N under every soil moisture conditions. The P N had a midday depression phenomenon, but the CAP did not exhibit this midday depression phenomenon under severe drought stress. The linear regression relationship of CAP and P N was CAP = 1.5945 + 0.1496 P N. The canopy apparent WUEC and leaf WUEL were the highest under moderate drought stress. The first was 5.3 and 5.8 times higher than the WUEL in mid-July and late August, respectively. The stem fresh biomass yield was 77 tons/ha under moderate drought stress and WUE of aboveground biomass yield (WUEB) was also the highest. Our results showed that moderate drought stress did not result in a significant reduction in biomass yield but increased WUE significantly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Canopy and leaf photosynthetic characteristics and water use efficiency of sweet sorghum under drought stress

Loading next page...
 
/lp/springer_journal/canopy-and-leaf-photosynthetic-characteristics-and-water-use-ENiKdloCbs
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712020197
Publisher site
See Article on Publisher Site

Abstract

The objective of this paper was to examine the relationship between Water Use Efficiency (WUE) at the canopy and leaf levels, to determine soil moisture conditions, which can optimize yield, and WUE of sweet sorghum (Sorghum bicolor (Linn.) Moench), thus providing some theoretical foundation for using marginal land effectively and developing production of sweet sorghum. Three levels of soil moisture conditions were established, and photosynthetic characteristics and yield were measured. The canopy apparent photo-synthetic rate (CAP) and leaf photosynthetic rate (P N) were reduced gradually with increased drought stress, and the CAP was lower than the P N under every soil moisture conditions. The P N had a midday depression phenomenon, but the CAP did not exhibit this midday depression phenomenon under severe drought stress. The linear regression relationship of CAP and P N was CAP = 1.5945 + 0.1496 P N. The canopy apparent WUEC and leaf WUEL were the highest under moderate drought stress. The first was 5.3 and 5.8 times higher than the WUEL in mid-July and late August, respectively. The stem fresh biomass yield was 77 tons/ha under moderate drought stress and WUE of aboveground biomass yield (WUEB) was also the highest. Our results showed that moderate drought stress did not result in a significant reduction in biomass yield but increased WUE significantly.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Feb 26, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off