Cannibalism in cephalopods

Cannibalism in cephalopods Cannibalism refers to the action of consuming a member of the same species and is common in many taxa. This paper reviews the available literature on cannibalism in cephalopods. All species of the class Cephalopoda are predators and cannibalism is common in most species whose diet has been studied. Cannibalism in cephalopods is density-dependent due to their aggressive predatory and in case of the octopuses territorial nature. It also depends upon local and temporal food availability and of the reproductive season. Cannibalistic behaviour is positively related to the size of both cannibal and victim. It can affect population dynamics of cephalopods in periods of low food availability and/or high population abundance. Cephalopods are generally restricted in their ability to store energy. It is thus assumed that cannibalism is part of a population energy storage strategy enabling cephalopod populations to react to favourable and adverse environmental conditions by increasing and reducing their number. Finally, we propose five orientation points for future research on cannibalism in cephalopods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Loading next page...
 
/lp/springer_journal/cannibalism-in-cephalopods-oW0Cu66Sm0
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Zoology ; Freshwater & Marine Ecology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-009-9129-y
Publisher site
See Article on Publisher Site

Abstract

Cannibalism refers to the action of consuming a member of the same species and is common in many taxa. This paper reviews the available literature on cannibalism in cephalopods. All species of the class Cephalopoda are predators and cannibalism is common in most species whose diet has been studied. Cannibalism in cephalopods is density-dependent due to their aggressive predatory and in case of the octopuses territorial nature. It also depends upon local and temporal food availability and of the reproductive season. Cannibalistic behaviour is positively related to the size of both cannibal and victim. It can affect population dynamics of cephalopods in periods of low food availability and/or high population abundance. Cephalopods are generally restricted in their ability to store energy. It is thus assumed that cannibalism is part of a population energy storage strategy enabling cephalopod populations to react to favourable and adverse environmental conditions by increasing and reducing their number. Finally, we propose five orientation points for future research on cannibalism in cephalopods.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Oct 9, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off