Can Stress-Induced CAM Provide for Performing the Developmental Program in Mesembryanthemum crystallinum Plants under Long-Term Salinity?

Can Stress-Induced CAM Provide for Performing the Developmental Program in Mesembryanthemum... The development of CAM-type photosynthesis is one of the adaptation mechanisms to severe water deficit. It provides plants with carbon dioxide and permits efficient water spending under extreme environments. In common ice plants, a complete switch from C3 to CAM photosynthesis was observed on the seventh day of salinity (0.5 M NaCl). The indices characterizing this switch were: (1) induction of phosphoenolpyruvate carboxylase; (2) diurnal changes in the organic acid content, which are characteristic of CAM plants, and (3) suppression of transpiration during the daytime. A decrease in the osmotic potential (ψπ) of the leaf sap, which occurred on the second day of salinity, preceded these changes. After long-term salinity stress (four–five weeks), ψπ attained extremely low values (–4.67 MPa), which made possible the water uptake by the root system. The restoration of the ψπ balance between cell compartments resulted from the accumulation of compatible solutes in the cytoplasm, proline primarily, which possesses osmoregulatory and stress-protective properties. This means that a complex of adaptive mechanisms is required for the realization of the common ice developmental program under salinity. These mechanisms maintained plant capacity to uptake water and permitted its efficient utilization. They triggered the development of stress-induced CAM-type photosynthesis, maintained the low osmotic potential in the cell sap, regulated the composition of macromolecules in the cell microenvironment, provided for water storage in tissues, and reduced the time of plant development. A comparison between the time-courses of CAM development and a decrease in the transpiration rate permitted us to suggest that a combination of low ψπ and CO2 in the leaf cells could serve as a signal for the induction of CAM-dependent gene expression in terrestrial plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Can Stress-Induced CAM Provide for Performing the Developmental Program in Mesembryanthemum crystallinum Plants under Long-Term Salinity?

Loading next page...
 
/lp/springer_journal/can-stress-induced-cam-provide-for-performing-the-developmental-eIviQ5nrIf
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1015588801750
Publisher site
See Article on Publisher Site

Abstract

The development of CAM-type photosynthesis is one of the adaptation mechanisms to severe water deficit. It provides plants with carbon dioxide and permits efficient water spending under extreme environments. In common ice plants, a complete switch from C3 to CAM photosynthesis was observed on the seventh day of salinity (0.5 M NaCl). The indices characterizing this switch were: (1) induction of phosphoenolpyruvate carboxylase; (2) diurnal changes in the organic acid content, which are characteristic of CAM plants, and (3) suppression of transpiration during the daytime. A decrease in the osmotic potential (ψπ) of the leaf sap, which occurred on the second day of salinity, preceded these changes. After long-term salinity stress (four–five weeks), ψπ attained extremely low values (–4.67 MPa), which made possible the water uptake by the root system. The restoration of the ψπ balance between cell compartments resulted from the accumulation of compatible solutes in the cytoplasm, proline primarily, which possesses osmoregulatory and stress-protective properties. This means that a complex of adaptive mechanisms is required for the realization of the common ice developmental program under salinity. These mechanisms maintained plant capacity to uptake water and permitted its efficient utilization. They triggered the development of stress-induced CAM-type photosynthesis, maintained the low osmotic potential in the cell sap, regulated the composition of macromolecules in the cell microenvironment, provided for water storage in tissues, and reduced the time of plant development. A comparison between the time-courses of CAM development and a decrease in the transpiration rate permitted us to suggest that a combination of low ψπ and CO2 in the leaf cells could serve as a signal for the induction of CAM-dependent gene expression in terrestrial plants.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off