Can Salicylic Acid Affect the Intercellular Transport of the Tobacco Mosaic Virus by Changing Plasmodesmal Permeability?

Can Salicylic Acid Affect the Intercellular Transport of the Tobacco Mosaic Virus by Changing... We studied the effects of salicylic acid (SA) on the plasmodesmal permeability as evaluated by the tobacco mosaic virus (TMV) spreading in tobacco Nicotiana glutinosaleaves, where TMV induces necrotic lesions. When leaves were treated with SA simultaneously with their viral inoculation, SA retarded the development of necrotic lesions and reduced their number. When inoculated leaves were kept on the SA solution at an elevated temperature (31°C) for a short period of time, the size of the necrotic lesions, which developed after leaf transfer to room temperature, was decreased. SA stimulated the formation of “rapid” callose involved in the control of the plasmodesmal permeability, which was assessed from fluorescence after tissue staining with Aniline Blue. On the basis of these data, we suggest that SA suppressed TMV spreading in the inoculated tobacco leaves by reducing the plasmodesmal permeability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Can Salicylic Acid Affect the Intercellular Transport of the Tobacco Mosaic Virus by Changing Plasmodesmal Permeability?

Loading next page...
 
/lp/springer_journal/can-salicylic-acid-affect-the-intercellular-transport-of-the-tobacco-eX1UfWm7R0
Publisher
Springer Journals
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1013760227650
Publisher site
See Article on Publisher Site

Abstract

We studied the effects of salicylic acid (SA) on the plasmodesmal permeability as evaluated by the tobacco mosaic virus (TMV) spreading in tobacco Nicotiana glutinosaleaves, where TMV induces necrotic lesions. When leaves were treated with SA simultaneously with their viral inoculation, SA retarded the development of necrotic lesions and reduced their number. When inoculated leaves were kept on the SA solution at an elevated temperature (31°C) for a short period of time, the size of the necrotic lesions, which developed after leaf transfer to room temperature, was decreased. SA stimulated the formation of “rapid” callose involved in the control of the plasmodesmal permeability, which was assessed from fluorescence after tissue staining with Aniline Blue. On the basis of these data, we suggest that SA suppressed TMV spreading in the inoculated tobacco leaves by reducing the plasmodesmal permeability.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off