Can quantum entanglement detection schemes improve search?

Can quantum entanglement detection schemes improve search? Quantum computation, in particular Grover’s algorithm, has aroused a great deal of interest since it allows for a quadratic speed-up to be obtained in search procedures. Classical search procedures for an N element database require at most O(N) time complexity. Grover’s algorithm is able to find a solution with high probability in $${O(\sqrt{N})}$$ time through an amplitude amplification scheme. In this work we draw elements from both classical and quantum computation to develop an alternative search proposal based on quantum entanglement detection schemes. In 2002, Horodecki and Ekert proposed an efficient method for direct detection of quantum entanglement. Our proposition to quantum search combines quantum entanglement detection alongside entanglement inducing operators. The quantum search algorithm relies on measuring a quantum superposition after having applied a unitary evolution. We deviate from the standard method by focusing on fine-tuning a unitary operator in order to infer the solution with certainty. Our proposal sacrifices space for speed and depends on the mathematical properties of linear positive maps Λ which have not been operationally characterized. Whether such a Λ can be easily determined remains an open question. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Can quantum entanglement detection schemes improve search?

Loading next page...
 
/lp/springer_journal/can-quantum-entanglement-detection-schemes-improve-search-kGodsTaqUB
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Computer Science, general; Theoretical, Mathematical and Computational Physics; Quantum Physics; Mathematics, general; Physics, general
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0231-4
Publisher site
See Article on Publisher Site

Abstract

Quantum computation, in particular Grover’s algorithm, has aroused a great deal of interest since it allows for a quadratic speed-up to be obtained in search procedures. Classical search procedures for an N element database require at most O(N) time complexity. Grover’s algorithm is able to find a solution with high probability in $${O(\sqrt{N})}$$ time through an amplitude amplification scheme. In this work we draw elements from both classical and quantum computation to develop an alternative search proposal based on quantum entanglement detection schemes. In 2002, Horodecki and Ekert proposed an efficient method for direct detection of quantum entanglement. Our proposition to quantum search combines quantum entanglement detection alongside entanglement inducing operators. The quantum search algorithm relies on measuring a quantum superposition after having applied a unitary evolution. We deviate from the standard method by focusing on fine-tuning a unitary operator in order to infer the solution with certainty. Our proposal sacrifices space for speed and depends on the mathematical properties of linear positive maps Λ which have not been operationally characterized. Whether such a Λ can be easily determined remains an open question.

Journal

Quantum Information ProcessingSpringer Journals

Published: Feb 16, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off