Calibration of multi-camera systems with refractive interfaces

Calibration of multi-camera systems with refractive interfaces A method for performing bundle adjustment–based calibration of a multi-camera setup with refractive interfaces in the optical path is presented. The method contributes to volumetric multi-camera fluid experiments, where it is desirable to avoid tedious alignment of calibration grids in multiple locations and where a premium is placed on accurately locating world points. Cameras are calibrated from image point correspondences of unknown world points, and the location of the refractive interface need not be accurately known a priori. Physical models for two practically relevant imaging configurations are presented; the first is a planar wall separating cameras and a liquid, and the second is a liquid-containing cylindrical tank with finite wall thickness. Each model allows the cameras to be in general location and orientation relative to the interface. A thorough numerical study demonstrates the ability of the calibration method to accurately estimate camera parameters, interface orientation, and world point locations. The numerical study explores the convergence, accuracy, and sensitivity of the calibration method as a function of initialization, camera configuration, volume size, and interface type. The technique is applied to real calibration data where the algorithm is supplied with errant initial parameter estimates and shown to provide accurate results. The ease of implementation and accuracy of the refractive calibration method make the approach attractive for three-dimensional multi-camera fluid measurement methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Calibration of multi-camera systems with refractive interfaces

Loading next page...
 
/lp/springer_journal/calibration-of-multi-camera-systems-with-refractive-interfaces-Nkyx2IPJRh
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag (outside the USA)
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1463-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial