Calibrating trajectory data for spatio-temporal similarity analysis

Calibrating trajectory data for spatio-temporal similarity analysis Due to the prevalence of GPS-enabled devices and wireless communications technologies, spatial trajectories that describe the movement history of moving objects are being generated and accumulated at an unprecedented pace. Trajectory data in a database are intrinsically heterogeneous , as they represent discrete approximations of original continuous paths derived using different sampling strategies and different sampling rates. Such heterogeneity can have a negative impact on the effectiveness of trajectory similarity measures, which are the basis of many crucial trajectory processing tasks. In this paper, we pioneer a systematic approach to trajectory calibration that is a process to transform a heterogeneous trajectory dataset to one with (almost) unified sampling strategies. Specifically, we propose an anchor-based calibration system that aligns trajectories to a set of anchor points, which are fixed locations independent of trajectory data. After examining four different types of anchor points for the purpose of building a stable reference system, we propose a spatial-only geometry-based calibration approach that considers the spatial relationship between anchor points and trajectories. Then a more advanced spatial-only model-based calibration method is presented, which exploits the power of machine learning techniques to train inference models from historical trajectory data to improve calibration effectiveness. Afterward, since trajectory has temporal information, we extend these two spatial-only trajectory calibration algorithms to incorporate the temporal information, which can infer a proper time stamp to each anchor point of a calibrated trajectory. At last, we provide a solution to reduce cost, i.e., the number of trajectories that is necessary to be re-calibrated, of the updating of the reference system. Finally, we conduct extensive experiments using real trajectory datasets to demonstrate the effectiveness and efficiency of the proposed calibration system. The VLDB Journal Springer Journals

Calibrating trajectory data for spatio-temporal similarity analysis

Loading next page...
Springer Berlin Heidelberg
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial